Groups of prime-power order

Definition Let p be a prime. A finite group G is a p-group if $|G|$ is a power of p.

For example, D_8 is a 2-group.

Lagrange’s Theorem shows that if G is a p-group and g is an element of G then the order of g is a power of p.

Theorem If G is a non-trivial finite p-group for some prime p then $Z(G) \neq \{1_G\}$.

Proof Let $|G| = p^n$ for some $n \geq 1$. Every conjugacy class in G has size dividing p^n, so has size p^r for some $r \leq n$. Suppose that there are m_r conjugacy classes of size p^r for $r = 0, 1, \ldots, n$. Then

$$m_0 1 + m_1 p + m_2 p^2 + \cdots + m_r p^r + \cdots + m_n p^n = p^n,$$

so p divides m_0. But $\{x\}$ is a whole conjugacy class of size 1 if and only if $x \in Z(G)$, so $m_0 = |Z(G)|$: therefore $m_0 \neq 0$, because $\{1_G\} \leq Z(G)$. So $|Z(G)|$ is a non-zero multiple of p, and therefore $|Z(G)| \geq p$. □

(Compare this with the proof of Cauchy’s Theorem.)

Corollary If G is a finite group of order p^n, where p is prime, then there are subgroups

$$\{1_G\} = G_0 < G_1 < \cdots < G_n = G$$

such that $|G_i| = p^i$ and $G_i \leq G$ for $i = 0, \ldots, n$.

Proof The proof is by induction on n. The statement is true when $n = 1$, for then $G_0 = \{1_G\}$ and $G_1 = G$.

1
Now take \(n \geq 2 \), and assume that the statement is true for \(n - 1 \). The theorem says that \(Z(G) \neq \{1_G\} \), so \(p \) divides \(|Z(G)| \). By Cauchy’s Theorem, \(Z(G) \) has an element \(z \) of order \(p \). Put \(G_1 = \langle z \rangle \). Then \(G_1 \leq G \), because \(G_1 \leq Z(G) \). Also, \(|G_1| = p \).

Put \(H = G/G_1 \). Then \(|H| = p^n/p = p^{n-1} \), so by the inductive hypothesis \(H \) has subgroups

\[
\{1_H\} = H_0 < H_1 < \cdots < H_{n-1} = H
\]

with \(|H_i| = p^i \) and \(H_i \leq H \) for \(i = 0, \ldots, n - 1 \). By the Correspondence Theorem, there is a subgroup \(G_{i+1} \) of \(G \) containing \(G_1 \) such that \(G_{i+1}/G_1 = H_i \) and \(G_{i+1} \leq G \) for \(i = 0, \ldots, n - 1 \). Moreover, \(|G_{i+1}| = |G_1| \times |H_i| = p^{i+1} \) for \(i = 0, \ldots, n - 1 \). Finally, the Correspondence Theorem shows that \(G_i \leq G_{i+1} \) for \(i = 0, \ldots, n - 1 \). \(\square \)

\begin{center}
\begin{tikzpicture}
 \node (G) at (0,0) {G};
 \node (H) at (2,0) {H};
 \node (G1) at (0,-1) {G_1};
 \node (G2) at (1,-1) {G_2};
 \node (H1) at (1,1) {H_1};
 \node (H0) at (1,-2) {$H_0 = \{1_H\}$};
 \node (1H) at (0,-4) {$\{1_G\}$};
 \draw (G) -- (H); \draw (G1) -- (G2); \draw (G1) -- (1H); \draw (G2) -- (H1); \draw (H0) -- (1H); \draw (H0) -- (H1);
\end{tikzpicture}
\end{center}

Theorem If \(G \) is Abelian then \(Z(G) = G \); otherwise, \(G/Z(G) \) is not cyclic.

Proof Part of the coursework.
Small p-groups

Let p be a prime. If $|G| = p$ then G is cyclic, because Lagrange’s Theorem shows that every element of G other than the identity has order p.

If $|G| = p^2$ then $|Z(G)|$ is 1 or p or p^2. We have just proved that $|Z(G)| \neq 1$. If $|Z(G)| = p$ then $|G/Z(G)| = p$ so $G/Z(G)$ is cyclic, contradicting the above theorem: hence $|Z(G)| \neq p$. Therefore $Z(G) = G$ and so G is Abelian.

If G has an element of order p^2 then it is cyclic. Otherwise, all non-identity elements have order p. Let a be an element of order p, and put $A = \langle a \rangle$. Choose any element b in $G \setminus A$. Then b also has order p. Put $B = \langle b \rangle$. Now $A \cap B \leq B$; and $A \cap B$ cannot be B, because $b \notin A$, so $A \cap B = \{1_G\}$. Moreover, $xy = yx$ for all x in A and all y in B, because G is Abelian. Therefore G contains the internal direct product $\langle a \rangle \times \langle b \rangle$. Because of the uniqueness of the expression of an element of an internal direct product,

$$\langle a \rangle \times \langle b \rangle = \{a^nb^m : 0 \leq n \leq p-1, 0 \leq m \leq p-1\},$$

and these p^2 products are all distinct. Therefore $G = \langle a \rangle \times \langle b \rangle$.

Challenge!

Find all groups of order 8.

Infinite p-groups

What could an infinite p-group be? Here is an example of an infinite group in which every element has order a power of the prime 2. We work inside the infinite Abelian group $(\mathbb{C} \setminus \{0\}, \times)$. Put

$$G = \{e^{2\pi i m/2^n} : n \in \mathbb{Z}, n \geq 0, m \in \mathbb{Z}\}.$$

Then G contains elements of order 2^n for all non-negative integers n.

3