Ring Theory

A ring is a set R with two binary operations $+$ and $*$ satisfying

(a) $(R, +)$ is an Abelian group;

(b) R is closed under $*$;

(c) $*$ is associative;

(d) $*$ is distributive over $+$, which means that

$$ (a + b) * c = a * c + b * c $$

and

$$ c * (a + b) = c * a + c * b $$

for all a, b, c in R.

The identity for $(R, +)$ is written 0_R or 0; the additive inverse of a is $-a$.

We usually write $a * b$ as ab.

Here are some simple consequences of the axioms:

(a) general associativity of multiplication: the product $a_1 * a_2 * \cdots * a_n$ is well-defined without parentheses;

(b) $a0_R = 0_Ra = 0_R$ for all a in R (proof: exercise).
A ring R is

a ring with identity if R contains an element 1_R such that $1_R \neq 0_R$ and $a1_R = 1_R a = a$ for all a in R;

a division ring if R has an identity and $(R \setminus \{0_R\}, *)$ is a group;

commutative if $a * b = b * a$ for all a, b in R;

a field if R is a commutative division ring.

If R has an identity and $ab = 1_R$ then b is written a^{-1} and a is called a *unit*. The set of units in a ring with identity forms a group (proof: exercise).

If $ab = 0_R$ but $a \neq 0_R$ and $b \neq 0_R$ then a and b are called zero-divisors. A commutative ring with identity and no zero-divisors is an integral domain.

Examples

(a) $(\mathbb{Z}, +, \times)$ is an integral domain.

(b) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.

(c) \mathbb{Z}_p is a field if p is prime.

(d) \mathbb{Z}_n is a commutative ring with identity for all n. If n is not prime then \mathbb{Z}_n has zero-divisors. For example, in \mathbb{Z}_6 we have $[2] \times [3] = [0]$.

(e) If R is a ring then the *ring of polynomials* over R, written $R[x]$, is the set of all polynomials with coefficients in R, with the usual addition and multiplication of polynomials. When we need to be formal, we think of a polynomial as being an infinite sequence (a_0, a_1, a_2, \ldots) of elements of R, with the property that there is some n such that $a_j = 0$ if $j > n$. For example, the informal polynomial $2 - x + 5x^2 + 8x^3$ in $\mathbb{Z}[x]$ is the sequence $(2, -1, 5, 8, 0, \ldots)$.

(f) This can be extended to the ring of polynomials in n variables x_1, \ldots, x_n by putting $R[x_1, x_2] = (R[x_1])[x_2], \ldots, R[x_1, \ldots, x_n] = (R[x_1, \ldots, x_{n-1}])[x_n]$.

(g) If $(G, +)$ is any Abelian group then we can turn G into a zero ring by putting $g * h = 0_G$ for all g, h in G.

(h) If R is a ring then $M_n(R)$ is the ring of all $n \times n$ matrices with entries in R, with the usual addition and multiplication of matrices. If $n \geq 2$ then $M_n(R)$ is not commutative (unless R is a zero ring) and $M_n(R)$ contains zero-divisors.
Sums

If \(a \) is an element of a ring \(R \) and \(m \) is a positive integer then

\[
ma \quad \text{denotes} \quad \underbrace{a + a + \cdots + a}_m \text{ times}
\]

\[
(-m)a \quad \text{denotes} \quad -(ma).
\]

Then \(na + ma = (n + m)a \) for all integers \(n, m \).

Subrings and ideals

Definition A subset \(S \) of a ring \(R \) is a subring of \(R \) if it is a ring under the same operations. We write \(S \subseteq R \).

The Subring Test If \(R \) is a ring and \(S \subseteq R \) then \(S \) is a subring of \(R \) if

(a) \((S, +) \) is a subgroup of \((R, +) \), and

(b) \(s \ast r \in S \) for all \(s, t \) in \(S \).

If \(S \) is a subring of \(R \) then \(0_S = 0_R \); but if \(R \) has an identity \(1_R \) then \(S \) might contain no identity or \(S \) might have an identity \(1_S \) different from \(1_R \).

Example Put \(R = M_2(\mathbb{Z}) \) and

\[
S = \left\{ \begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix} : n \in \mathbb{Z} \right\}.
\]

Then \(S \subseteq R \), \(1_R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin S \) and \(1_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \).

Definition A subset \(S \) of a ring \(R \) is an ideal of \(R \) if \(S \) is a subring of \(R \) and \(s \ast r \in S \) and \(r \ast s \in S \) for all \(s \) in \(S \) and all \(r \) in \(R \). We write \(S \trianglelefteq R \).

\(\{0_R\} \) is an ideal of \(R \).

\(R \) is an ideal of itself.

If \(R \) has an identity \(1_R \) and \(S \) is an ideal of \(R \) and \(1_R \in S \) then \(S = R \).

If \(R \) is commutative with an identity and \(a \in R \) then \(\{ar : r \in R\} \) is an ideal of \(R \), called \(aR \). It is the smallest ideal of \(R \) containing \(a \), so it is also written \(\langle a \rangle \).

In a general ring, the principal ideal \(\langle a \rangle \) is

\[
\left\{ na + r_0a + as_0 + \sum_{i=1}^{m} r_1as_i : n, m \in \mathbb{Z}, \ m \geq 0, \ r_1, s_i \in R \right\}.
\]
Example \(\mathbb{Z} \) is a commutative ring with identity. \(2\mathbb{Z} \) is a principal ideal of \(\mathbb{Z} \); it has no identity. The integer 4 is in \(2\mathbb{Z} \) and \(4\mathbb{Z} \) is a principal ideal of \(2\mathbb{Z} \) but \(4(2\mathbb{Z}) = 8\mathbb{Z} \neq 4\mathbb{Z} \).

Example For any integer \(m \), \(m\mathbb{Z} \leq \mathbb{Z} \) and \(M_2(m\mathbb{Z}) \leq M_2(\mathbb{Z}) \).

Lemma If \(I \) and \(J \) are ideals of a ring \(R \), then so is \(I \cap J \). In fact, the intersection of any non-empty collection of ideals of \(R \) is itself an ideal of \(R \).

Proof Exercise.

If \(A \subseteq R \) then \(R \) is an ideal containing \(A \). By the lemma, the intersection of all the ideals containing \(A \) is itself an ideal—the smallest ideal containing \(A \). It is written \(\langle A \rangle \) (or \((A) \) in some books).

Quotient rings

If \(S \) is a subring of \(R \) then it is a subgroup under addition, so it has cosets. Because addition is commutative, right cosets are the same as left cosets. The coset containing the element \(a \) is \(\{s + a : s \in S\} \), which is written \(S + a \). We know that we can define addition on cosets by

\[(S + a) + (S + b) = S + (a + b).\]

This makes the set of cosets into an Abelian group. Now we want to define multiplication of cosets in such a way that the cosets form a ring.

Theorem If \(S \) is an ideal of \(R \), then we can define multiplication of cosets of \(S \) by

\[(S + a) \ast (S + b) = S + ab.\]

This is well defined, and makes the set of cosets into a ring, called the quotient ring \(R/S \).

Proof Suppose that \(S + a_1 = S + a_2 \) and \(S + b_1 = S + b_2 \). Then \(a_2 - a_1 = s_1 \in S \) and \(b_2 - b_1 = s_2 \in S \), and

\[a_2b_2 = (s_1 + a_1)(s_2 + b_1) = s_1s_2 + a_1s_2 + s_1b_1 + a_1b_1.\]

The first three terms are in \(S \), so so is their sum, so \(a_2b_2 - a_1b_1 \in S \) and therefore \(S + a_2b_2 = S + a_1b_1 \). So multiplication is well defined, and the set of cosets is closed under multiplication.
For a, b, c in R:

\[
((S + a) \ast (S + b)) \ast (S + c) = (S + ab) \ast (S + c)
\]

\[
= S + (ab)c
\]

\[
= S + a(bc)
\]

\[
= (S + a) \ast (S + bc)
\]

\[
= (S + a) \ast ((S + b) \ast (S + c)),
\]

so multiplication is associative.

Moreover,

\[
((S + a) + (S + b)) \ast (S + c) = (S + (a + b)) \ast (S + c)
\]

\[
= S + (a + b)c
\]

\[
= S + (ac + bc)
\]

\[
= (S + ac) + (S + bc)
\]

\[
= (S + a) \ast (S + c) + (S + b) \ast (S + c),
\]

and, similarly,

\[
(S + c) \ast ((S + a) + (S + b)) = (S + c) \ast (S + a) + (S + c) \ast (S + b),
\]

so multiplication is distributive over addition.

Therefore R/S is a ring. □

Example Given m in \mathbb{Z} with $m > 0$, we get $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$.

Ideals in matrix rings

Theorem Let R be a ring.

(a) If I is an ideal of R then $M_n(I)$ is an ideal of $M_n(R)$.

(b) If R has an identity and J is an ideal of $M_n(R)$ then there is some ideal I of R such that $J = M_n(I)$.

Proof

(a) (i) Every ideal I contains 0_R, so the zero matrix is in $M_n(I)$ for every ideal I; in particular, $M_n(I)$ is not empty.

(ii) If A and B are in $M_n(I)$ with $A = [a_{ij}]$ and $B = [b_{ij}]$ then $a_{ij} \in I$ and $b_{ij} \in I$ so $a_{ij} - b_{ij} \in I$ for $1 \leq i, j \leq n$ and so $A - B \in I$.

5
(iii) If $C \in M_n(R)$ and $A \in M_n(I)$ then every entry of CA has the form $\sum_j c_{ij}a_{jk}$.
Each term $c_{ij}a_{jk}$ is in I, because $c_{ij} \in R$ and $a_{ij} \in I$. The sum of elements of I is itself an element of I, so every entry of CA is in I: hence $CA \in M_n(I)$.
Similarly, every entry of AC is in I, and so $AC \in M_n(I)$.

(b) Let E_{ij} be the matrix in $M_n(R)$ with (i, j)-th entry equal to 1_R and all other entries equal to 0_R. If $A = [a_{ij}]$ then

$$E_{ki}A = \begin{bmatrix} 0 & \ldots & 0 \\ 0 & \ldots & 0 \\ \vdots & \vdots & \vdots \\ \text{i-th row of } A & \rightarrow \text{row } k \\ \vdots & \vdots & \vdots \\ 0 & \ldots & 0 \end{bmatrix}$$

so

$$E_{ki}A E_{jl} = \begin{bmatrix} 0 & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \ldots & 0 & a_{ij} & 0 & \ldots & 0 \\ 0 & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \ldots & 0 & 0 & \ldots & 0 \end{bmatrix} \rightarrow \text{row } k = a_{ij}E_{kl}.$$

Let $J \subseteq M_n(R)$, and put

$$I = \{ a \in R : a \text{ is an entry in any matrix in } J \}.$$

Then $J \subseteq M_n(I)$, and $I \neq \emptyset$.

If $A \in J$ then $E_{ki}A E_{jl} \in J$ so if $a \in I$ then $aE_{kl} \in J$ for $1 \leq k, l \leq n$. In particular, $a E_{11} \in J$. If a and b are in I then $a E_{11} \in J$ and $b E_{11} \in J$, so $a E_{11} - b E_{11} \in J$ so $(a - b) E_{11} \in J$ so $a - b \in I$; and if $r \in R$ then $(r E_{11})(a E_{11}) \in J$ so $r E_{11} \in J$ so $ra \in I$, and $(a E_{11})(r E_{11}) \in J$ so $ar E_{11} \in J$ so $ar \in I$. Hence $I \subseteq R$.

If $A = [a_{ij}]$ with each a_{ij} in I then $a_{ij} E_{ij} \in J$ for $1 \leq i, j \leq n$, but $A = \sum_i \sum_j a_{ij} E_{ij}$ so $A \in J$, so $M_n(I) \subseteq J$. Therefore $J = M_n(I)$. \(\square\)
Simple rings

Definition A ring R is *simple* if

(a) $\{rs : r \in R, s \in R\} \neq \{0_R\}$ and

(b) the only ideals of R are $\{0_R\}$ and R.

If R has an identity then (a) is always satisfied.
If R is a field (or a division ring) then R is simple.

Corollary to preceding Theorem If R is a simple ring with identity then $M_n(R)$ is simple. In particular, if F is a field then $M_n(F)$ is simple.