Scenes from mathematical life

Peter J. Cameron

Forder lectures
April 2008
Never apologize, always explain: Scenes from mathematical life

Peter J. Cameron
G. C. Steward Visiting Fellow
Gonville & Caius College
Cambridge
March 2008
Never apologize, always explain:
Scenes from mathematical life

Peter J. Cameron
G. C. Steward Visiting Fellow
Gonville & Caius College
Cambridge
March 2008

The aim of this short series of lectures is to give some impression of what life as a mathematician is like. It has taken me to many parts of the world, and enable me to work with extraordinary people from many different cultures.
The aim of this short series of lectures is to give some impression of what life as a mathematician is like. It has taken me to many parts of the world, and enable me to work with extraordinary people from many different cultures. There will be some mathematical content in the lectures. As Julian Havel said, mathematics is not a spectator sport; I will expect some engagement from you.
The Steward lectures

▶ Lecture 1: Before and beyond Sudoku
The Steward lectures

- Lecture 1: Before and beyond Sudoku
- Lecture 2: Proving Theorems in Tehran
The Steward lectures

- **Lecture 1**: Before and beyond Sudoku
The Steward lectures

- **Lecture 1**: Before and beyond Sudoku
- **Lecture 3**: Transgressing the boundaries
The Steward lectures

- **Lecture 1**: Before and beyond Sudoku
- **Lecture 2**: Proving Theorems in Tehran
- **Lecture 3**: Transgressing the boundaries
 (with apologies to Alan Sokal, “Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity”, *Social Text*, Spring/Summer 1996)
The Steward lectures

- **Lecture 1**: Before and beyond Sudoku
- **Lecture 3**: Transgressing the boundaries (with apologies to Alan Sokal, “Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity”, *Social Text*, Spring/Summer 1996)
- **Lecture 4**: Cameron felt like counting
The Steward lectures

- **Lecture 1**: Before and beyond Sudoku
- **Lecture 2**: Proving Theorems in Tehran
- **Lecture 3**: Transgressing the boundaries
 (with apologies to Alan Sokal, “Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity”, *Social Text*, Spring/Summer 1996)
- **Lecture 4**: Cameron felt like counting
 (After a character in *The Hawkline Monster: A Gothic Western* by Richard Brautigan)
The Steward lectures

▸ Lecture 1: Before and beyond Sudoku

▸ Lecture 2: Proving Theorems in Tehran

▸ Lecture 3: Transgressing the boundaries
 (with apologies to Alan Sokal, “Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity”, Social Text, Spring/Summer 1996)

▸ Lecture 4: Cameron felt like counting
 (After a character in The Hawkline Monster: A Gothic Western by Richard Brautigan)

‘I count a lot of things that there’s no need to count,’ Cameron said. ‘Just because that’s the way I am. But I count all the things that need to be counted.’
From Higman–Sims to Urysohn

Mathematicians in Scandale
My 60th birthday card (by Neill Cameron)
The adjacency matrix of a graph has rows and columns indexed by the vertices of the graph; the entry in position \((v, w)\) is 1 if \(v\) is joined to \(w\), 0 otherwise.

\[
\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}
\]
The adjacency matrix of a graph has rows and columns indexed by the vertices of the graph; the entry in position \((v, w)\) is 1 if \(v\) is joined to \(w\), 0 otherwise.
The spectrum of a graph

The **spectrum** of a graph is the spectrum (the multiset of eigenvalues) of its adjacency matrix.
The spectrum of a graph

The spectrum of a graph is the spectrum (the multiset of eigenvalues) of its adjacency matrix.

It is independent of the ordering of the vertices.
The spectrum of a graph

The **spectrum** of a graph is the spectrum (the multiset of eigenvalues) of its adjacency matrix.

It is independent of the ordering of the vertices.

What does the spectrum tell us about the graph?
Graphs with least eigenvalue -2

Two classes were known:

- **Line graphs** (vertices of $L(\Gamma)$ are edges of Γ, joined if they meet in a vertex);

- **Cocktail party graphs** (vertices paired up, each vertex joined to every other except its pair).
Graphs with least eigenvalue -2

Two classes were known:

- **Line graphs** (vertices of $L(\Gamma)$ are edges of Γ, joined if they meet in a vertex);
- **Cocktail party graphs** (vertices paired up, each vertex joined to ever other except its pair).

Hoffman merged these two classes together to obtain generalized line graphs.
The theorem

Hoffman (unpublished) may have showed that any “sufficiently large” connected graph with least eigenvalue -2 is a generalized line graph. No indication what “sufficiently large” meant.
Hoffman (unpublished) may have showed that any “sufficiently large” connected graph with least eigenvalue -2 is a generalized line graph. No indication what “sufficiently large” meant.

In the 1970s, Jaap Seidel (Eindhoven) and Jean-Marie Goethals (Brussels) were working on this when I visited them.
A root system is a finite set S of non-zero vectors in real Euclidean space with the following properties:

- if $v, cv \in S$ then $c = \pm 1$;
A root system is a finite set S of non-zero vectors in real Euclidean space with the following properties:

- if $v, cv \in S$ then $c = \pm 1$;
- if $v, w \in S$ then $2(v \cdot w)/(v \cdot v)$ is an integer;
Root systems

A **root system** is a finite set S of non-zero vectors in real Euclidean space with the following properties:

- if $v, cv \in S$ then $c = \pm 1$;
- if $v, w \in S$ then $2(v \cdot w)/(v \cdot v)$ is an integer;
- S is mapped to itself by the reflection in the hyperplane perpendicular to any of its vectors. (The reflection corresponding to v is the map $w \mapsto w - 2(v \cdot w)/(v \cdot v)v$.)
A **root system** is a finite set S of non-zero vectors in real Euclidean space with the following properties:

- if $v, cv \in S$ then $c = \pm 1$;
- if $v, w \in S$ then $2(v \cdot w)/(v \cdot v)$ is an integer;
- S is mapped to itself by the reflection in the hyperplane perpendicular to any of its vectors. (The reflection corresponding to v is the map $w \mapsto w - 2(v \cdot w)/(v \cdot v)v$.)

A root system is **indecomposable** if it is not contained in the union of two non-zero orthogonal subspaces; it is **spherical** if all roots have the same length.
In the course of their classification of simple Lie algebras over the complex numbers, Cartan and Killing had to find all the indecomposable root systems.
In the course of their classification of simple Lie algebras over the complex numbers, Cartan and Killing had to find all the indecomposable root systems. The spherical ones, which concern us here, form two infinite families, A_n (for $n \geq 1$) and D_n (for $n \geq 4$), and three “sporadic” ones, E_6, E_7 and E_8. (The subscript is the dimension of the Euclidean space.)
The root systems A_2 and A_3
The connection

Let Γ have adjacency matrix A with least eigenvalue -2. Then $2I + A$ is \textbf{positive semi-definite}, so is a matrix of inner products of a set of vectors in Euclidean space. The lines spanned by these vectors make angles 90° or 60° with one another.
Let Γ have adjacency matrix A with least eigenvalue -2. Then $2I + A$ is positive semi-definite, so is a matrix of inner products of a set of vectors in Euclidean space. The lines spanned by these vectors make angles 90° or 60° with one another.

Enlarge this set to a maximal such set, and take vectors of fixed length in both directions along each line. These vectors form a root system!
Let Γ have adjacency matrix A with least eigenvalue -2. Then $2I + A$ is positive semi-definite, so is a matrix of inner products of a set of vectors in Euclidean space. The lines spanned by these vectors make angles 90° or 60° with one another.

Enlarge this set to a maximal such set, and take vectors of fixed length in both directions along each line. These vectors form a root system!

So the graph can be “embedded” in A_n, D_n, E_6, E_7 or E_8.
The result

Since A_n is contained in D_{n+1} and the exceptions in E_8, we only need consider D_n and E_8.
The result

Since A_n is contained in D_{n+1} and the exceptions in E_8, we only need consider D_n and E_8.

A graph in D_n is precisely one of Hoffman’s generalized line graphs.
The result

Since A_n is contained in D_{n+1} and the exceptions in E_8, we only need consider D_n and E_8.

A graph in D_n is precisely one of Hoffman’s generalized line graphs.

Clearly only finitely many graphs are in E_8 (in fact they have at most 36 vertices).
The result

Since A_n is contained in D_{n+1} and the exceptions in E_8, we only need consider D_n and E_8.

A graph in D_n is precisely one of Hoffman’s generalized line graphs.

Clearly only finitely many graphs are in E_8 (in fact they have at most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We” is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)
The result

Since A_n is contained in D_{n+1} and the exceptions in E_8, we only need consider D_n and E_8.

A graph in D_n is precisely one of Hoffman’s generalized line graphs. Clearly only finitely many graphs are in E_8 (in fact they have at most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We” is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)

But the story is not over …
Möbius function

This is a generalization of the “Inclusion–Exclusion Principle”.

If we know the size of the whole set, and the sizes of the circles and their intersections, we can calculate the size of the part outside all the circles. It is a sum of the other numbers multiplied by $+1$ or -1.
Möbius function

This is a generalization of the “Inclusion–Exclusion Principle”.

If we know the size of the whole set, and the sizes of the circles and their intersections, we can calculate the size of the part outside all the circles. It is a sum of the other numbers multiplied by $+1$ or -1.

For more general situations, we replace the ± 1s by the values of the Möbius function.
International conference on Combinatorics, Linear Algebra and Graph Colouring, at the Institute for Studies in Theoretical Physics and Mathematics (IPM) in Tehran, Iran.
International conference on Combinatorics, Linear Algebra and Graph Colouring, at the Institute for Studies in Theoretical Physics and Mathematics (IPM) in Tehran, Iran.
IPM grounds
The mountains from IPM
Details of the museums of Tehran (to which we were taken on excursions)
Daily News

- Details of the museums of Tehran (to which we were taken on excursions)
- The invited speakers’ mathematical genealogy
Daily News

- Details of the museums of Tehran (to which we were taken on excursions)
- The invited speakers’ mathematical genealogy
- Menus, e.g. for *Bagali Polo*, which we had for lunch
Daily News

- Details of the museums of Tehran (to which we were taken on excursions)
- The invited speakers’ mathematical genealogy
- Menus, e.g. for Bagali Polo, which we had for lunch
- Summary of Persian music
Daily News

- Details of the museums of Tehran (to which we were taken on excursions)
- The invited speakers’ mathematical genealogy
- Menus, e.g. for Bagali Polo, which we had for lunch
- Summary of Persian music
- Competitions for students, e.g. “Discover the middle names of the invited speakers”
The winner ...
Proving theorems in Tehran

During and after the conference I did three pieces of work which resulted in papers in the conference proceedings.

One of these was work with three postdocs at IPM: Maimani, Omidi and Tayfeh-Reziae, in connection with a problem in design theory. We have a particular permutation group acting on a set of n elements. (Actually the group $\text{PSL}(2, q)$, where $n = q + 1$). We want to find, for each value of k, all possible sizes of sets of k-element subsets which admit the action of this group, and how many of each size there are.
During and after the conference I did three pieces of work which resulted in papers in the conference proceedings. One of these was work with three postdocs at IPM: Maimani, Omidi and Tayfeh-Reziae, in connection with a problem in design theory.
During and after the conference I did three pieces of work which resulted in papers in the conference proceedings.

One of these was work with three postdocs at IPM: Maimani, Omidi and Tayfeh-Rezai, in connection with a problem in design theory.

We have a particular permutation group acting on a set of n elements. (Actually the group $\text{PSL}(2, q)$, where $n = q + 1$). We want to find, for each value of k, all possible sizes of sets of k-element subsets which admit the action of this group, and how many of each size there are.
To solve this problem, we need to know three things about the group:

▶ All of its subgroups (these were determined by Dickson in the early 20th century).
▶ Their orbit lengths (these are relatively easy and were worked out before).
▶ The so-called “Möbius function” of each possible subgroup. This turns out also to be known but is more obscure.
Data on the group

To solve this problem, we need to know three things about the group:

- All of its subgroups (these were determined by Dickson in the early 20th century).

- Their orbit lengths (these are relatively easy and were worked out before).

- The so-called “Möbius function” of each possible subgroup. This turns out also to be known but is more obscure.
Data on the group

To solve this problem, we need to know three things about the group:

▶ All of its subgroups (these were determined by Dickson in the early 20th century).
▶ Their orbit lengths (these are relatively easy and were worked out before).
Data on the group

To solve this problem, we need to know three things about the group:

▶ All of its subgroups (these were determined by Dickson in the early 20th century).
▶ Their orbit lengths (these are relatively easy and were worked out before).
▶ The so-called “Möbius function” of each possible subgroup. This turns out also to be known but is more obscure.
There are three “exceptional” subgroups of our group, which don’t fit into a regular pattern. These are the rotation groups of the regular polyhedra: tetrahedron, cube, and dodecahedron.
There are three “exceptional” subgroups of our group, which don’t fit into a regular pattern. These are the rotation groups of the regular polyhedra: tetrahedron, cube, and dodecahedron.

Ignoring signs, the values of the Möbius function of these three groups turn out to be 3, 2, 1 respectively (ignoring signs).
There are three “exceptional” subgroups of our group, which don’t fit into a regular pattern. These are the rotation groups of the regular polyhedra: tetrahedron, cube, and dodecahedron.

Ignoring signs, the values of the Möbius function of these three groups turn out to be 3, 2, 1 respectively (ignoring signs).

But there is another occurrence of these numbers …
John McKay’s most famous discovery was

$$196883 + 1 = 196884.$$
John McKay’s most famous discovery was

$$196{,}883 + 1 = 196{,}884.$$

This was at the time when the Monster, the largest sporadic finite simple group, had been “discovered” but not constructed. Evidence suggested that the smallest size of matrices which can represent this group over the complex numbers is $196{,}883 \times 196{,}883$.

The number 196 884 is the first non-trivial Fourier coefficient of the modular function, which arises in classical (nineteenth-century) complex analysis. At the time McKay was maybe the only mathematician in the world who knew both of these facts. This led to the conjectures termed “Monstrous moonshine” by Conway and Norton and proved by Borcherds, connections to conformal field theory and Lie algebras, etc.
John McKay

John McKay’s most famous discovery was

\[196\,883 + 1 = 196\,884. \]

This was at the time when the Monster, the largest sporadic finite simple group, had been “discovered” but not constructed. Evidence suggested that the smallest size of matrices which can represent this group over the complex numbers is \(196\,883 \times 196\,883 \).

The number 196 884 is the first non-trivial Fourier coefficient of the modular function, which arises in classical (nineteenth-century) complex analysis.
John McKay

John McKay’s most famous discovery was

\[196\,883 + 1 = 196\,884. \]

This was at the time when the **Monster**, the largest sporadic finite simple group, had been “discovered” but not constructed. Evidence suggested that the smallest size of matrices which can represent this group over the complex numbers is \(196\,883 \times 196\,883 \).

The number 196 884 is the first non-trivial Fourier coefficient of the **modular function**, which arises in classical (nineteenth-century) complex analysis.

At the time McKay was maybe the only mathematician in the world who knew both of these facts. This led to the conjectures termed “Monstrous moonshine” by Conway and Norton and proved by Borcherds, connections to conformal field theory and Lie algebras, etc.
The McKay correspondence

John McKay noticed another curious thing.
The McKay correspondence

John McKay noticed another curious thing.

A rotation group in 3-dimensional space (such as the polyhedral groups) has a “double cover”, a group of 2×2 complex unitary matrices twice as large.
John McKay noticed another curious thing.

A rotation group in 3-dimensional space (such as the polyhedral groups) has a “double cover”, a group of 2×2 complex unitary matrices twice as large.

Each of these groups is described by a graph, whose vertices are the irreducible representations of the group, vertices V and W being joined if W is a constituent of $V \otimes S$, where S is the representation by 2×2 matrices we start with.
John McKay noticed another curious thing.

A rotation group in 3-dimensional space (such as the polyhedral groups) has a “double cover”, a group of 2×2 complex unitary matrices twice as large.

Each of these groups is described by a graph, whose vertices are the irreducible representations of the group, vertices V and W being joined if W is a constituent of $V \otimes S$, where S is the representation by 2×2 matrices we start with.

The fact that S is unitary implies that the graph is undirected. If we label each vertex with its dimension, the number at each vertex is the sum of the numbers at its neighbours.
The graphs associated to the binary polyhedral groups are precisely the extended Coxeter–Dynkin diagrams associated with the exceptional root systems E_6, E_7 and E_8. These diagrams are obtained by taking a “fundamental basis” (with non-positive inner products), and adjoining the “largest root”.

![Diagram of extended Coxeter–Dynkin diagrams for E_6, E_7, and E_8.]
Connection numbers

Each root system spans a lattice L in Euclidean space. Because the inner products of root vectors are integers, the lattice is contained in its dual lattice L^\dagger, consisting of all vectors v such that $v \cdot w \in \mathbb{Z}$ for all $w \in L$. It is known that L^\dagger / L is a finite group. Its order is the connection number of the root system.
Each root system spans a lattice L in Euclidean space. Because the inner products of root vectors are integers, the lattice is contained in its dual lattice L^\dagger, consisting of all vectors v such that $v \cdot w \in \mathbb{Z}$ for all $w \in L$. It is known that L^\dagger / L is a finite group. Its order is the connection number of the root system.

For the root systems E_6, E_7, E_8, the connection numbers are 3, 2, 1 respectively (the same as the Möbius functions of the polyhedral groups.)
Each root system spans a lattice L in Euclidean space. Because the inner products of root vectors are integers, the lattice is contained in its dual lattice L^\dagger, consisting of all vectors v such that $v \cdot w \in \mathbb{Z}$ for all $w \in L$. It is known that L^\dagger/L is a finite group. Its order is the connection number of the root system.

For the root systems E_6, E_7, E_8, the connection numbers are 3, 2, 1 respectively (the same as the Möbius functions of the polyhedral groups.)

What is the connection?
A character in my thesis was a remarkable graph with 100 vertices constructed by Higman and Sims. It contains no triangles, and the automorphism group is transitive on 3-claws.
A character in my thesis was a remarkable graph with 100 vertices constructed by Higman and Sims. It contains no triangles, and the automorphism group is transitive on 3-claws.
A character in my thesis was a remarkable graph with 100 vertices constructed by Higman and Sims. It contains no triangles, and the automorphism group is transitive on 3-claws.

Its automorphism group has a simple subgroup of index 2, the sporadic Higman–Sims group.
Henson’s graph

Henson discovered an infinite graph with some similarities. It has no triangles, and the automorphism group is transitive on n-claws for all n. (Its automorphism group is also simple, a very recent result of Macpherson and Tent.)
Henson’s graph

Henson discovered an infinite graph with some similarities. It has no triangles, and the automorphism group is transitive on n-claws for all n. (Its automorphism group is also simple, a very recent result of Macpherson and Tent.)

For rather complicated reasons I began to wonder: Does Henson’s graph admit a cyclic automorphism? That is, can you arrange the vertices along a line so that a shift one place to the right preserves the graph?
Sum-free sets

If so, label the vertices by integers, and let S be the set of positive neighbours of zero. Then
Sum-free sets

If so, label the vertices by integers, and let \(S \) be the set of positive neighbours of zero. Then

- \(S \) determines the graph;
Sum-free sets

If so, label the vertices by integers, and let S be the set of positive neighbours of zero. Then

- S determines the graph;
- the graph is triangle-free if and only if S is sum-free (i.e. if $x, y \in S$, then $x + y \notin S$);
Sum-free sets

If so, label the vertices by integers, and let S be the set of positive neighbours of zero. Then

- S determines the graph;
- the graph is triangle-free if and only if S is sum-free (i.e. if $x, y \in S$, then $x + y \not\in S$);
- the graph is Henson’s if and only if the sum-free set is universal.
If so, label the vertices by integers, and let S be the set of positive neighbours of zero. Then

- S determines the graph;
- the graph is triangle-free if and only if S is sum-free (i.e. if $x, y \in S$, then $x + y \notin S$);
- the graph is Henson’s if and only if the sum-free set is universal.

No explicit construction of a universal sum-free set is known …
If we forget about the triangle-free condition, there is a remarkable countable graph called the random graph. As its name suggests, if you choose edges at random, you are almost certain to get this graph!
If we forget about the triangle-free condition, there is a remarkable countable graph called the random graph. As its name suggests, if you choose edges at random, you are almost certain to get this graph!

If you choose a set S of positive integers at random, you are almost certain to get a universal set, which will give a cyclic automorphism of the random graph.
Random sum-free sets

If you choose a sum-free set at random, it turns out that you don’t get a universal sum-free set. Something much more interesting happens …
Random sum-free sets

If you choose a sum-free set at random, it turns out that you don’t get a universal sum-free set. Something much more interesting happens …
Random sum-free sets

If you choose a sum-free set at random, it turns out that you don’t get a universal sum-free set. Something much more interesting happens …

Universal sum-free sets do exist; the existence proof is non-constructive, but uses ideas from topology (Baire category) rather than probability.
The Urysohn space

After I spoke about the random graph at the European Congress of Mathematics at Barcelona in 2000, Anatoly Vershik told me about the Urysohn space, a remarkable metric space which is in some sense the “random complete metric space”.
The Urysohn space

After I spoke about the random graph at the European Congress of Mathematics at Barcelona in 2000, Anatoly Vershik told me about the Urysohn space, a remarkable metric space which is in some sense the “random complete metric space”.

By similar methods, we were able to show that the Urysohn space also admits a cyclic isometry all of whose cycles are dense; so the space has an abelian group structure. Indeed it has many different abelian group structures! The story goes on …