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Sudoku

There’s no mathematics involved. Use logic and reasoning
to solve the puzzle.

Instructions in The Independent

But who invented Sudoku?
I Leonhard Euler
I W. U. Behrens
I John Nelder
I Howard Garns
I Robert Connelly
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Euler

Euler posed the following question in 1782.

Of 36 officers, one holds each combination of six ranks and
six regiments. Can they be arranged in a 6× 6 square on a
parade ground, so that each rank and each regiment is
represented once in each row and once in each column?



NO!!



Latin squares

A Latin square of order n is an n× n array containing the
symbols 1, . . . , n such that each symbol occurs once in each row
and once in each column.

The Cayley table of a group is a Latin square. In fact, the
Cayley table of a binary system (A, ◦) is a Latin square if and
only if (A, ◦) is a quasigroup. (This means that left and right
division are uniquely defined, i.e. the equations a ◦ x = b and
y ◦ a = b have unique solutions x and y for any a and b.)

Example

◦ a b c
a b a c
b a c b
c c b a
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About Latin squares

There is still a lot that we don’t know about Latin squares.

I The number of different Latin squares of order n is not far
short of nn2

(but we don’t know exactly). (By contrast, the
number of groups of order n is at most about nc(log2 n)2

,
with c = 2

27 .)
I There is a Markov chain method to choose a random Latin

square. But we don’t know much about what a random
Latin square looks like.

I For example, the second row is a permutation of the first;
this permutation is a derangement (i.e. has no fixed
points). Are all derangements roughly equally likely?



About Latin squares

There is still a lot that we don’t know about Latin squares.
I The number of different Latin squares of order n is not far

short of nn2
(but we don’t know exactly). (By contrast, the

number of groups of order n is at most about nc(log2 n)2
,

with c = 2
27 .)

I There is a Markov chain method to choose a random Latin
square. But we don’t know much about what a random
Latin square looks like.

I For example, the second row is a permutation of the first;
this permutation is a derangement (i.e. has no fixed
points). Are all derangements roughly equally likely?



About Latin squares

There is still a lot that we don’t know about Latin squares.
I The number of different Latin squares of order n is not far

short of nn2
(but we don’t know exactly). (By contrast, the

number of groups of order n is at most about nc(log2 n)2
,

with c = 2
27 .)

I There is a Markov chain method to choose a random Latin
square. But we don’t know much about what a random
Latin square looks like.

I For example, the second row is a permutation of the first;
this permutation is a derangement (i.e. has no fixed
points). Are all derangements roughly equally likely?



About Latin squares

There is still a lot that we don’t know about Latin squares.
I The number of different Latin squares of order n is not far

short of nn2
(but we don’t know exactly). (By contrast, the

number of groups of order n is at most about nc(log2 n)2
,

with c = 2
27 .)

I There is a Markov chain method to choose a random Latin
square. But we don’t know much about what a random
Latin square looks like.

I For example, the second row is a permutation of the first;
this permutation is a derangement (i.e. has no fixed
points). Are all derangements roughly equally likely?



Orthogonal Latin squares

Two Latin squares A and B are orthogonal if, given any k, l,
there are unique i, j such that Aij = k and Bij = l.

Euler was right that there do not exist orthogonal Latin squares
of order 6; they exist for all other orders greater than 2.

But we don’t know
I how many orthogonal pairs of Latin squares of order n

there are;
I the maximum number of mutually orthogonal Latin

squares of order n;
I how to choose at random an orthogonal pair.
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Latin squares in statistics

Latin squares are used to “balance” treatments against
systematic variations across the experimental layout.

A Latin square in Beddgelert Forest, designed by R. A. Fisher.
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Behrens

The German statistician W. U. Behrens invented gerechte
designs in 1956.

Take an n× n grid divided into n regions, with n cells in each.
A gerechte design for this partition involves filling the cells
with the numbers 1, . . . , n in such a way that each row, column,
or region contains each of the numbers just once. So it is a
special kind of Latin square.

Example

Suppose that there is a boggy patch in the middle of the field.

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5



Behrens

The German statistician W. U. Behrens invented gerechte
designs in 1956.

Take an n× n grid divided into n regions, with n cells in each.
A gerechte design for this partition involves filling the cells
with the numbers 1, . . . , n in such a way that each row, column,
or region contains each of the numbers just once. So it is a
special kind of Latin square.

Example

Suppose that there is a boggy patch in the middle of the field.

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5



Behrens

The German statistician W. U. Behrens invented gerechte
designs in 1956.

Take an n× n grid divided into n regions, with n cells in each.
A gerechte design for this partition involves filling the cells
with the numbers 1, . . . , n in such a way that each row, column,
or region contains each of the numbers just once. So it is a
special kind of Latin square.

Example

Suppose that there is a boggy patch in the middle of the field.

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5



Nelder

The statistician John Nelder defined a critical set in a Latin
square in 1977. This is a partial Latin square which can be
completed in only one way.

A trade in a Latin square is a collection of entries which can be
“traded” for different entries so that another Latin square is
formed.

A subset of the entries of a Latin square is a critical set if and
only if it intersects every trade.

What is the size of the smallest critical set in an n× n Latin
square? It is conjectured that the answer is bn2/4c, but this is
known only for n ≤ 8.

How difficult is it to recognise a critical set, or to complete one?
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Garns

It was Howard Garns, a retired architect, who put the ideas of
Nelder and Behrens together and turned it into a puzzle in
1979, in Dell Magazines.

A Sudoku puzzle is a critical set for a gerechte design for the
9× 9 grid partitioned into 3× 3 subsquares. The puzzler’s job
is to complete the square.

Garns called his puzzle “number place”. It became popular in
Japan under the name “Sudoku” in 1986 and returned to the
West a couple of years ago.
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Connelly

Robert Connelly proposed a variant which he called symmetric
Sudoku. The solution must be a gerechte design for all these
regions:

3 5 9 2 4 8 1 6 7
4 8 1 6 7 3 5 9 2
7 2 6 9 1 5 8 3 4
8 1 4 7 3 6 9 2 5
2 6 7 1 5 9 3 4 8
5 9 3 4 8 2 6 7 1
6 7 2 5 9 1 4 8 3
9 3 5 8 2 4 7 1 6
1 4 8 3 6 7 2 5 9

Rows Columns Subsquares
Broken rows Broken columns Locations
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Coordinates

We coordinatise the cells of the grid with F4, where F is the
integers mod 3, as follows:

I the first coordinate labels large rows;
I the second coordinate labels small rows within large rows;
I the third coordinate labels large columns;
I the fourth coordinate labels small columns within large

columns.

Now Connelly’s regions are cosets of the following subspaces:

Rows x1 = x2 = 0 Columns x3 = x4 = 0
Subsquares x1 = x3 = 0 Broken rows x2 = x3 = 0
Broken columns x1 = x4 = 0 Locations x2 = x4 = 0
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Affine spaces and SET R©

The card game SET has 81 cards, each of which has four
attributes taking three possible values (number of symbols,
shape, colour, and shading). A winning combination is a set of
three cards on which either the attributes are all the same, or
they are all different.

Each card has four coordinates taken from F (the integers
mod 3), so the set of cards is identified with the 4-dimensional
affine space. Then the winning combinations are precisely the
affine lines!
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Perfect codes

A code is a set C of “words” or n-tuples over a fixed alphabet F.
The Hamming distance between two words v, w is the number
of coordinates where they differ; that is, the number of errors
needed to change the transmitted word v into the received
word w.

A code C is e-error-correcting if there is at most one word at
distance e or less from any codeword. [Equivalently, any two
codewords have distance at least 2e + 1.] We say that C is
perfect e-error-correcting if “at most” is replaced here by
“exactly”.
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Perfect codes and symmetric Sudoku

Take a solution to a symmetric Sudoku puzzle, and look at the
set S of positions of a particular symbol s. The coordinates of
the points of S have the property that any two differ in at least
three places; that is, they have Hamming distance at least 3.
[For, if two of these words agreed in the positions 1 and 2, then
s would occur twice in a row; and similarly for the other pairs.]

Counting now shows that any element of F4 lies at Hamming
distance 1 or less from a unique element of S; so S is a perfect
1-error-correcting code.

So a symmetric Sudoku solution is a partition of F4 into nine
perfect codes.
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All symmetric Sudoku solutions

Now it can be shown that a perfect code C in F4 is an affine
plane, that is, a coset of a 2-dimensional subspace of F4. To
show this, we use the SET R© principle: We show that if v, w ∈ C,
then the word which agrees with v and w in the positions
where they agree and differs from them in the positions where
they differ is again in C.

So we have to partition F4 into nine special affine planes.

It is not hard to show that there are just two ways to do this.

One solution consists of nine cosets of a fixed subspace.

There is just one further type, consisting of six cosets of one
subspace and three of another. [Take a solution of the first type,
and replace three affine planes in a 3-space with a different set
of three affine planes.]
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All Sudoku solutions

By contrast, Jarvis and Russell showed that the number of
different types of solution to ordinary Sudoku is 5 472 730 538.

They used the Orbit-Counting Lemma:

the number of orbits of a group on a finite set is equal to the
average number of fixed points of the group elements.

An earlier computation by Felgenhauer and Jarvis gives the
total number of solutions to be 6 670 903 752 021 072 936 960.
Now for each conjugacy class of non-trivial symmetries of the
grid, it is somewhat easier to calculate the number of fixed
solutions.
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Some open problems

Given a n× n grid partitioned into n regions each of size n:

I What is the computational complexity of deciding whether
there exists a gerechte design?

I Assuming that there exists a gerechte design, how many
are there (exactly or asymptotically), and how do we
choose one uniformly at random?

I Assuming that there exists a gerechte design, what is the
maximum number of pairwise orthogonal gerechte
designs?

I Which gerechte designs have “good” statistical properties?
If we are given a Latin square L, and we take the regions to be
the positions of symbols in L, then a gerechte design is a Latin
square orthogonal to L; so the above questions all generalise
classical problems about orthogonal Latin squares.

The last two questions are particularly interesting in the case
where n = kl and the regions are k× l rectangles.
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