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Sudoku

There’s no mathematics involved. Use
logic and reasoning to solve the puzzle.

Instructions in The Independent

But who invented Sudoku?

• Leonhard Euler

• W. U. Behrens

• John Nelder

• Howard Garns

• Robert Connelly

Euler
Euler posed the following question in 1782.

Of 36 officers, one holds each combina-
tion of six ranks and six regiments. Can
they be arranged in a 6 × 6 square on
a parade ground, so that each rank and
each regiment is represented once in each
row and once in each column?

NO!!

Latin squares
A Latin square of order n is an n × n array con-

taining the symbols 1, . . . , n such that each symbol
occurs once in each row and once in each column.

The Cayley table of a group is a Latin square.
In fact, the Cayley table of a binary system (A, ◦)
is a Latin square if and only if (A, ◦) is a quasi-
group. (This means that left and right division are
uniquely defined, i.e. the equations a ◦ x = b and
y ◦ a = b have unique solutions x and y for any a
and b.)

Example 1.
◦ a b c
a b a c
b a c b
c c b a

About Latin squares
There is still a lot that we don’t know about

Latin squares.

• The number of different Latin squares of or-
der n is not far short of nn2

(but we don’t
know exactly). (By contrast, the number of
groups of order n is at most about nc(log2 n)2

,
with c = 2

27 .)

• There is a Markov chain method to choose
a random Latin square. But we don’t know
much about what a random Latin square
looks like.

• For example, the second row is a permutation
of the first; this permutation is a derangement
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(i.e. has no fixed points). Are all derange-
ments roughly equally likely?

Orthogonal Latin squares
Two Latin squares A and B are orthogonal if,

given any k, l, there are unique i, j such that Aij = k
and Bij = l.

Euler was right that there do not exist orthogo-
nal Latin squares of order 6; they exist for all other
orders greater than 2.

But we don’t know

• how many orthogonal pairs of Latin squares
of order n there are;

• the maximum number of mutually orthogo-
nal Latin squares of order n;

• how to choose at random an orthogonal pair.

Latin squares in statistics
Latin squares are used to “balance” treatments

against systematic variations across the experi-
mental layout.

A Latin square in Beddgelert Forest, designed
by R. A. Fisher.

Behrens
The German statistician W. U. Behrens invented

gerechte designs in 1956.

Take an n × n grid divided into n regions, with
n cells in each. A gerechte design for this partition
involves filling the cells with the numbers 1, . . . , n
in such a way that each row, column, or region
contains each of the numbers just once. So it is a
special kind of Latin square.

Example 2. Suppose that there is a boggy patch in
the middle of the field.

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5

Nelder
The statistician John Nelder defined a critical set

in a Latin square in 1977. This is a partial Latin
square which can be completed in only one way.

A trade in a Latin square is a collection of entries
which can be “traded” for different entries so that
another Latin square is formed.

A subset of the entries of a Latin square is a crit-
ical set if and only if it intersects every trade.

What is the size of the smallest critical set in an
n × n Latin square? It is conjectured that the an-
swer is bn2/4c, but this is known only for n ≤ 8.

How difficult is it to recognise a critical set, or to
complete one?

Garns
It was Howard Garns, a retired architect, who

put the ideas of Nelder and Behrens together and
turned it into a puzzle in 1979, in Dell Magazines.

A Sudoku puzzle is a critical set for a gerechte
design for the 9 × 9 grid partitioned into 3 × 3
subsquares. The puzzler’s job is to complete the
square.

Garns called his puzzle “number place”. It be-
came popular in Japan under the name “Sudoku”
in 1986 and returned to the West a couple of years
ago.

Connelly
Robert Connelly proposed a variant which he

called symmetric Sudoku. The solution must be a
gerechte design for all these regions:
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3 5 9 2 4 8 1 6 7
4 8 1 6 7 3 5 9 2
7 2 6 9 1 5 8 3 4
8 1 4 7 3 6 9 2 5
2 6 7 1 5 9 3 4 8
5 9 3 4 8 2 6 7 1
6 7 2 5 9 1 4 8 3
9 3 5 8 2 4 7 1 6
1 4 8 3 6 7 2 5 9

Rows Columns Subsquares
Broken rows Broken columns Locations

Coordinates
We coordinatise the cells of the grid with F4,

where F is the integers mod 3, as follows:

• the first coordinate labels large rows;

• the second coordinate labels small rows
within large rows;

• the third coordinate labels large columns;

• the fourth coordinate labels small columns
within large columns.

Now Connelly’s regions are cosets of the follow-
ing subspaces:

Rows x1 = x2 = 0 Columns x3 = x4 = 0
Subsquares x1 = x3 = 0 Broken rows x2 = x3 = 0
Broken columns x1 = x4 = 0 Locations x2 = x4 = 0

Affine spaces and SET R©

The card game SET has 81 cards, each of which
has four attributes taking three possible values
(number of symbols, shape, colour, and shading).
A winning combination is a set of three cards on
which either the attributes are all the same, or they
are all different.

Each card has four coordinates taken from F (the
integers mod 3), so the set of cards is identified
with the 4-dimensional affine space. Then the win-
ning combinations are precisely the affine lines!

Perfect codes
A code is a set C of “words” or n-tuples over a

fixed alphabet F. The Hamming distance between
two words v, w is the number of coordinates where
they differ; that is, the number of errors needed to
change the transmitted word v into the received
word w.

A code C is e-error-correcting if there is at most
one word at distance e or less from any code-
word. [Equivalently, any two codewords have dis-
tance at least 2e + 1.] We say that C is perfect e-
error-correcting if “at most” is replaced here by “ex-
actly”.

Perfect codes and symmetric Sudoku
Take a solution to a symmetric Sudoku puzzle,

and look at the set S of positions of a particular
symbol s. The coordinates of the points of S have
the property that any two differ in at least three
places; that is, they have Hamming distance at
least 3. [For, if two of these words agreed in the
positions 1 and 2, then s would occur twice in a
row; and similarly for the other pairs.]

Counting now shows that any element of F4 lies
at Hamming distance 1 or less from a unique ele-
ment of S; so S is a perfect 1-error-correcting code.

So a symmetric Sudoku solution is a partition of
F4 into nine perfect codes.

All symmetric Sudoku solutions
Now it can be shown that a perfect code C in F4

is an affine plane, that is, a coset of a 2-dimensional
subspace of F4. To show this, we use the SET R©

principle: We show that if v, w ∈ C, then the word
which agrees with v and w in the positions where
they agree and differs from them in the positions
where they differ is again in C.

So we have to partition F4 into nine special
affine planes.

It is not hard to show that there are just two
ways to do this.

One solution consists of nine cosets of a fixed
subspace.

There is just one further type, consisting of six
cosets of one subspace and three of another. [Take
a solution of the first type, and replace three affine
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planes in a 3-space with a different set of three
affine planes.]

All Sudoku solutions
By contrast, Jarvis and Russell showed that the

number of different types of solution to ordinary
Sudoku is 5 472 730 538.

They used the Orbit-Counting Lemma:

the number of orbits of a group on a fi-
nite set is equal to the average number of
fixed points of the group elements.

An earlier computation by Felgenhauer and
Jarvis gives the total number of solutions to be
6 670 903 752 021 072 936 960. Now for each conju-
gacy class of non-trivial symmetries of the grid, it
is somewhat easier to calculate the number of fixed
solutions.

Some open problems
Given a n × n grid partitioned into n regions

each of size n:

• What is the computational complexity of de-
ciding whether there exists a gerechte design?

• Assuming that there exists a gerechte design,
how many are there (exactly or asymptoti-
cally), and how do we choose one uniformly
at random?

• Assuming that there exists a gerechte design,
what is the maximum number of pairwise or-
thogonal gerechte designs?

• Which gerechte designs have “good” statisti-
cal properties?

If we are given a Latin square L, and we take the
regions to be the positions of symbols in L, then
a gerechte design is a Latin square orthogonal to
L; so the above questions all generalise classical
problems about orthogonal Latin squares.

The last two questions are particularly interest-
ing in the case where n = kl and the regions are
k × l rectangles.
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