The profile of a relational structure

Peter J. Cameron
Queen Mary, University of London
Isaac Newton Institute, Cambridge

24 June 2008
A relational structure is a set carrying a collection of relations with specified arities.
A relational structure is a set carrying a collection of relations with specified arities. Graphs, partial orders, circular orders, etc. are examples.
A relational structure is a set carrying a collection of relations with specified arities. Graphs, partial orders, circular orders, etc. are examples.

The age of an infinite relational structure is the class of all finite structures embeddable into it.
A relational structure is a set carrying a collection of relations with specified arities. Graphs, partial orders, circular orders, etc. are examples.

The age of an infinite relational structure is the class of all finite structures embeddable into it.

The profile is the sequence \((f_0,f_1,f_2,\ldots)\), were \(f_n\) is the number of \(n\)-element structures in the age, up to isomorphism.
Examples

- An infinite linear order
Examples

- An infinite linear order
 - Age: all finite linear orders

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$

- An infinite path
 - Age: All finite unions of paths
 - Profile: $f_n = p(n)$ (partitions of n)

- A totally ordered set coloured with k colours, each colour class dense
 - Age: words in an alphabet of size k
 - Profile: $f_n = k^n$
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n
- A disjoint union of edges
- A totally ordered set coloured with k colours, each colour class dense
 - Age: words in an alphabet of size k
 - Profile: $f_n = k^n$
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n
- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices

\quad
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$

- An infinite path
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$

- An infinite path
 - Age: All finite unions of paths
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n
- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$
- An infinite path
 - Age: All finite unions of paths
 - Profile: $f_n = p(n)$ (partitions of n)
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$

- An infinite path
 - Age: All finite unions of paths
 - Profile: $f_n = p(n)$ (partitions of n)

- A totally ordered set coloured with k colours, each colour class dense
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: \(f_n = 1 \) for all \(n \)

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: \(f_n = \lfloor n/2 \rfloor + 1 \)

- An infinite path
 - Age: All finite unions of paths
 - Profile: \(f_n = p(n) \) (partitions of \(n \))

- A totally ordered set coloured with \(k \) colours, each colour class dense
 - Age: words in an alphabet of size \(k \)
Examples

- An infinite linear order
 - Age: all finite linear orders
 - Profile: $f_n = 1$ for all n

- A disjoint union of edges
 - Age: All finite unions of edges and isolated vertices
 - Profile: $f_n = \lfloor n/2 \rfloor + 1$

- An infinite path
 - Age: All finite unions of paths
 - Profile: $f_n = p(n)$ (partitions of n)

- A totally ordered set coloured with k colours, each colour class dense
 - Age: words in an alphabet of size k
 - Profile: $f_n = k^n$
A partition into 2-sets with parts totally ordered
A partition into 2-sets with parts totally ordered
 - Age: Ordered partitions of finite sets into parts of size 1 or 2
A partition into 2-sets with parts totally ordered
 - Age: Ordered partitions of finite sets into parts of size 1 or 2
 - Profile: $f_n = n$th Fibonacci number
A partition into 2-sets with parts totally ordered
 - Age: Ordered partitions of finite sets into parts of size 1 or 2
 - Profile: \(f_n = \) nth Fibonacci number

A generic set with a total order and equivalence relation
A partition into 2-sets with parts totally ordered
 ▶ Age: Ordered partitions of finite sets into parts of size 1 or 2
 ▶ Profile: $f_n = n$th Fibonacci number

A generic set with a total order and equivalence relation
 ▶ Age: Partitioned sets
- A partition into 2-sets with parts totally ordered
 - Age: Ordered partitions of finite sets into parts of size 1 or 2
 - Profile: $f_n = \text{nth Fibonacci number}$
- A generic set with a total order and equivalence relation
 - Age: Partitioned sets
 - Profile: $f_n = B_n$ (nth Bell number)
- A partition into 2-sets with parts totally ordered
 - Age: Ordered partitions of finite sets into parts of size 1 or 2
 - Profile: \(f_n = n \)th Fibonacci number
- A generic set with a total order and equivalence relation
 - Age: Partitioned sets
 - Profile: \(f_n = B_n \) (\(n \)th Bell number)
- A universal graph
- A partition into 2-sets with parts totally ordered
 - Age: Ordered partitions of finite sets into parts of size 1 or 2
 - Profile: $f_n = n$th Fibonacci number

- A generic set with a total order and equivalence relation
 - Age: Partitioned sets
 - Profile: $f_n = B_n$ (nth Bell number)

- A universal graph
 - Age: All finite graphs
A partition into 2-sets with parts totally ordered
 ▶ Age: Ordered partitions of finite sets into parts of size 1 or 2
 ▶ Profile: \(f_n = \text{nth Fibonacci number} \)

A generic set with a total order and equivalence relation
 ▶ Age: Partitioned sets
 ▶ Profile: \(f_n = B_n \) (nth Bell number)

A universal graph
 ▶ Age: All finite graphs
 ▶ Profile: \(f_n \sim \frac{2^{n(n-1)/2}}{n!} \)
Let G be a permutation group on the countably infinite set Ω. Then there is a relational structure R on Ω such that

- G is contained in the automorphism group of Ω;
- if two finite substructures of R are isomorphic, then there is an element of G inducing the given isomorphism between them.

This means that R is homogeneous, and that G is a dense subgroup of its automorphism group (in the topology of pointwise convergence).

So the profile of R also counts orbits of G on n-element subsets of Ω for $n = 0, 1, 2, \ldots$.
Let G be a permutation group on the countably infinite set Ω. Then there is a relational structure R on Ω such that

- G is contained in the automorphism group of Ω;
Let G be a permutation group on the countably infinite set Ω. Then there is a relational structure R on Ω such that

- G is contained in the automorphism group of Ω;
- if two finite substructures of R are isomorphic, then there is an element of G inducing the given isomorphism between them.

This means that R is homogeneous, and that G is a dense subgroup of its automorphism group (in the topology of pointwise convergence).

So the profile of R also counts orbits of G on n-element subsets of Ω for $n = 0, 1, 2, \ldots$.
Let G be a permutation group on the countably infinite set Ω. Then there is a relational structure R on Ω such that

- G is contained in the automorphism group of Ω;
- if two finite substructures of R are isomorphic, then there is an element of G inducing the given isomorphism between them. This means that R is homogeneous, and that G is a dense subgroup of its automorphism group (in the topology of pointwise convergence).
Permutation groups

Let G be a permutation group on the countably infinite set Ω. Then there is a relational structure R on Ω such that

- G is contained in the automorphism group of Ω;
- if two finite substructures of R are isomorphic, then there is an element of G inducing the given isomorphism between them. This means that R is homogeneous, and that G is a dense subgroup of its automorphism group (in the topology of pointwise convergence).

So the profile of R also counts orbits of G on n-element subsets of Ω for $n = 0, 1, 2, \ldots$.
Quite a lot is known globally about the growth of a profile:

- Either an and $f_n \leq bn$ for some natural number d and a, $b > 0$; or f_n grows faster than a polynomial in n.
- In the latter case, $f_n \geq \exp(n^{1/2} - \epsilon)$ for sufficiently large n.
- (These two results assume that the number of relations is finite).

- In the case of a primitive permutation group (one preserving no non-trivial equivalence relation), there is a constant $c > 1$ such that either $f_n = 1$ for all n, or $f_n \geq c^{n/p(n)}$ for some polynomial p.
The growth of the profile

Quite a lot is known globally about the growth of a profile:

- Either \(an^d \leq f_n \leq bn^d \) for some natural number \(d \) and \(a, b > 0 \); or \(f_n \) grows faster than a polynomial in \(n \).
The growth of the profile

Quite a lot is known globally about the growth of a profile:

- Either \(an^d \leq f_n \leq bn^d \) for some natural number \(d \) and \(a, b > 0 \); or \(f_n \) grows faster than a polynomial in \(n \).
- In the latter case, \(f_n \geq \exp(n^{1/2-\epsilon}) \) for sufficiently large \(n \). (These two results assume that the number of relations is finite).
The growth of the profile

Quite a lot is known globally about the growth of a profile:

▶ Either \(an^d \leq f_n \leq bn^d \) for some natural number \(d \) and \(a, b > 0 \); or \(f_n \) grows faster than a polynomial in \(n \).

▶ In the latter case, \(f_n \geq \exp(n^{1/2-\epsilon}) \) for sufficiently large \(n \). (These two results assume that the number of relations is finite).

▶ In the case of a primitive permutation group (one preserving no non-trivial equivalence relation), there is a constant \(c > 1 \) such that either \(f_n = 1 \) for all \(n \), or \(f_n \geq c^n / p(n) \) for some polynomial \(p \).
Local conditions

Much less is known about “local” conditions relating individual values of f_n.
Local conditions

Much less is known about “local” conditions relating individual values of f_n.

Theorem

$$f_n \leq f_{n+1}.$$
Much less is known about “local” conditions relating individual values of f_n.

Theorem

$f_n \leq f_{n+1}$.

There are two known proofs of this theorem; one using a Ramsey-type theorem (outlined on the next slide), the other using finite combinatorics and linear algebra (see later).
A Ramsey-type theorem

Given a colouring of the \(n \)-sets with colours \(c_1, \ldots, c_r \), we say that the colour scheme of an \((n + 1)\)-set \(S \) is the \(r \)-tuple \((a_1, \ldots, a_r)\), where \(a_i \) is the number of sets of colour \(c_i \) in \(S \).
A Ramsey-type theorem

Given a colouring of the n-sets with colours c_1, \ldots, c_r, we say that the colour scheme of an $(n + 1)$-set S is the r-tuple (a_1, \ldots, a_r), where a_i is the number of sets of colour c_i in S.

Theorem

Let the n-subsets of an infinite (or sufficiently large finite) set Ω be coloured with r colours (all of which are used). Then there are at least r colour schemes of $(n + 1)$-sets. In fact, there exist $(n + 1)$-sets T_1, \ldots, T_r so that T_i contains a set of colour c_i but none of colour c_j for $j > i$. The "Ramsey numbers" associated with this theorem are not known.
A Ramsey-type theorem

Given a colouring of the n-sets with colours c_1, \ldots, c_r, we say that the colour scheme of an $(n+1)$-set S is the r-tuple (a_1, \ldots, a_r), where a_i is the number of sets of colour c_i in S.

Theorem

Let the n-subsets of an infinite (or sufficiently large finite) set Ω be coloured with r colours (all of which are used). Then there are at least r colour schemes of $(n+1)$-sets. In fact, there exist $(n+1)$-sets T_1, \ldots, T_r so that T_i contains a set of colour c_i but none of colour c_j for $j > i$.

The “Ramsey numbers” associated with this theorem are not known.
The age algebra

Let V_n be the complex vector space of all functions from $\binom{\Omega}{n}$ to \mathbb{C} which are constant on isomorphism classes (or G-orbits). Thus, $\dim(V_n) = f_n$.
The age algebra

Let V_n be the complex vector space of all functions from $\binom{\Omega}{n}$ to \mathbb{C} which are constant on isomorphism classes (or G-orbits). Thus, $\dim(V_n) = f_n$.

There is a multiplication defined on $A = \bigoplus_{n \geq 0} V_n$ as follows: for $f \in V_n$, $g \in V_m$, and $X \in \binom{\Omega}{m+n}$, put

$$(fg)(X) = \sum_{Y \in \binom{X}{n}} f(Y)g(X \setminus Y).$$

The multiplication is commutative and associative, and the constant function $1 \in V_0$ is the identity. So A is a graded algebra with Hilbert series $\sum f_n x^n$.

In the fourth of our examples, A is the shuffle algebra on k symbols.
The age algebra

Let V_n be the complex vector space of all functions from $\binom{\Omega}{n}$ to \mathbb{C} which are constant on isomorphism classes (or G-orbits). Thus, $\dim(V_n) = f_n$.

There is a multiplication defined on $A = \bigoplus_{n \geq 0} V_n$ as follows: for $f \in V_n$, $g \in V_m$, and $X \in \binom{\Omega}{m+n}$, put

$$(fg)(X) = \sum_{Y \in \binom{X}{n}} f(Y)g(X \setminus Y).$$

The multiplication is commutative and associative, and the constant function $1 \in V_0$ is the identity.
The age algebra

Let V_n be the complex vector space of all functions from $\binom{\Omega}{n}$ to \mathbb{C} which are constant on isomorphism classes (or G-orbits). Thus, $\dim(V_n) = f_n$.

There is a multiplication defined on $A = \bigoplus_{n \geq 0} V_n$ as follows: for $f \in V_n$, $g \in V_m$, and $X \in \binom{\Omega}{m+n}$, put

$$(fg)(X) = \sum_{Y \in \binom{X}{n}} f(Y)g(X \setminus Y).$$

The multiplication is commutative and associative, and the constant function $1 \in V_0$ is the identity. So A is a graded algebra with Hilbert series $\sum f_n x^n$.
The age algebra

Let V_n be the complex vector space of all functions from $\binom{\Omega}{n}$ to \mathbb{C} which are constant on isomorphism classes (or G-orbits). Thus, $\dim(V_n) = f_n$.

There is a multiplication defined on $A = \bigoplus_{n \geq 0} V_n$ as follows: for $f \in V_n$, $g \in V_m$, and $X \in \binom{\Omega}{m+n}$, put

$$(fg)(X) = \sum_{Y \in \binom{X}{n}} f(Y)g(X \setminus Y).$$

The multiplication is commutative and associative, and the constant function $1 \in V_0$ is the identity. So A is a graded algebra with Hilbert series $\sum f_n x^n$.

In the fourth of our examples, A is the shuffle algebra on k symbols.
The structure of A

Let e be the constant function $1 \in V_1$.
The structure of A

Let e be the constant function $1 \in V_1$.

Theorem

*The element e is not a zero-divisor in A.***
Let e be the constant function $1 \in V_1$.

Theorem

The element e is not a zero-divisor in A.

This theorem is proved by finite combinatorial arguments. It implies that multiplication by e is a monomorphism from V_n to V_{n+1}, and hence

$$f_n = \dim(V_n) \leq \dim(V_{n+1}) = f_{n+1}$$

for any n.

Two conjectures

A relational structure R is said to be **inexhaustible** if there is no point whose removal makes the age strictly smaller. In the group case, this holds if and only if G has no finite orbits.

Some time ago I conjectured the group case of the following.

Conjecture

Assume that R is inexhaustible. Then

- A is an integral domain (that is, has no zero-divisors);
- e is prime in A (that is, $A/\langle e \rangle$ is an integral domain).

The first of these conjectures has very recently been proved by Maurice Pouzet.
Two conjectures

A relational structure R is said to be **inexhaustible** if there is no point whose removal makes the age strictly smaller. In the group case, this holds if and only if G has no finite orbits.

Some time ago I conjectured the group case of the following.
Two conjectures

A relational structure R is said to be **inexhaustible** if there is no point whose removal makes the age strictly smaller. In the group case, this holds if and only if G has no finite orbits.

Some time ago I conjectured the group case of the following.

Conjecture

Assume that R is inexhaustible. Then

- A is an integral domain (that is, has no zero-divisors);

The first of these conjectures has very recently been proved by Maurice Pouzet.
Two conjectures

A relational structure R is said to be **inexhaustible** if there is no point whose removal makes the age strictly smaller. In the group case, this holds if and only if G has no finite orbits.

Some time ago I conjectured the group case of the following.

Conjecture

Assume that R is inexhaustible. Then

- A is an integral domain (that is, has no zero-divisors);
- e is prime in A (that is, $A/\langle e \rangle$ is an integral domain).
A relational structure R is said to be **inexhaustible** if there is no point whose removal makes the age strictly smaller. In the group case, this holds if and only if G has no finite orbits.

Some time ago I conjectured the group case of the following.

Conjecture

Assume that R is inexhaustible. Then

- A is an integral domain (that is, has no zero-divisors);
- e is prime in A (that is, $A/\langle e \rangle$ is an integral domain).

The first of these conjectures has very recently been proved by Maurice Pouzet.
Local consequences

Pouzet’s Theorem has the following consequence:
Local consequences

Pouzet’s Theorem has the following consequence:

Theorem

Assume that R is inexhaustible. Then $f_{m+n} \geq f_m + f_n - 1$.

In outline: multiplication induces a map from the *Segre variety* (the rank 1 tensors modulo scalars) in $V_m \otimes V_n$ into V_{m+n} modulo scalars; so the dimension of V_{m+n} is at least as great as that of the Segre variety.
Local consequences

Pouzet’s Theorem has the following consequence:

Theorem

Assume that R is inexhaustible. Then $f_{m+n} \geq f_m + f_n - 1$.

In outline: multiplication induces a map from the *Segre variety* (the rank 1 tensors modulo scalars) in $V_m \otimes V_n$ into V_{m+n} modulo scalars; so the dimension of V_{m+n} is at least as great as that of the Segre variety.

In a similar way, if the second part of the conjecture is true, then the profile of an inexhaustible structure would satisfy $g_{m+n} \geq g_m + g_n - 1$, where $g_n = f_{n+1} - f_n$. (Apply a similar argument to $A/\langle e \rangle$, whose nth homogeneous component is V_{n+1}/eV_n, with dimension $f_{n+1} - f_n$.)
Sketch proof

Let Ω be a set, \mathbb{K} a field with characteristic zero. Let $f : \binom{\Omega}{n} \to \mathbb{K}$. The support of f is $\{X \in \binom{\Omega}{n} : f(X) \neq 0\}$. A set T is a transversal to a family \mathcal{H} of sets if $T \cap H \neq \emptyset$ for all $H \in \mathcal{H}$. The transversality of \mathcal{H} is the cardinality of the smallest transversal.

Pouzet proved:

Theorem

Given $m, n \geq 0$, there exists t such that, for any Ω with $|\Omega| \geq m + n$, any field \mathbb{K} of characteristic zero, and any two non-zero maps $f : \binom{\Omega}{n} \to \mathbb{K}$, $g : \binom{\Omega}{m} \to \mathbb{K}$ such that $fg = 0$, the transversality of $\text{supp}(f) \cup \text{supp}(g)$ is at most t.

The result follows since removal of a transversal would decrease the age, which is impossible in an inexhaustible structure.
Sketch proof

Let Ω be a set, \mathbb{K} a field with characteristic zero. Let $f : \binom{\Omega}{n} \to \mathbb{K}$. The support of f is $\{X \in \binom{\Omega}{n} : f(X) \neq 0\}$. A set T is a transversal to a family \mathcal{H} of sets if $T \cap H \neq \emptyset$ for all $H \in \mathcal{H}$. The transversality of \mathcal{H} is the cardinality of the smallest transversal.

Pouzet proved:

Theorem

Given $m, n \geq 0$, there exists t such that, for any Ω with $|\Omega| \geq m + n$, any field \mathbb{K} of characteristic zero, and any two non-zero maps $f : \binom{\Omega}{n} \to \mathbb{K}, g : \binom{\Omega}{m} \to \mathbb{K}$ such that $fg = 0$, the transversality of $\text{supp}(f) \cup \text{supp}(g)$ is at most t. The result follows since removal of a transversal would decrease the age, which is impossible in an inexhaustible structure.
Sketch proof

Let \(\Omega \) be a set, \(\mathbb{K} \) a field with characteristic zero. Let \(f : \binom{\Omega}{n} \rightarrow \mathbb{K} \). The support of \(f \) is \(\{ X \in \binom{\Omega}{n} : f(X) \neq 0 \} \). A set \(T \) is a transversal to a family \(\mathcal{H} \) of sets if \(T \cap H \neq \emptyset \) for all \(H \in \mathcal{H} \). The transversality of \(\mathcal{H} \) is the cardinality of the smallest transversal.

Pouzet proved:

Theorem

Given \(m, n \geq 0 \), there exists \(t \) such that, for any \(\Omega \) with \(|\Omega| \geq m + n \), any field \(\mathbb{K} \) of characteristic zero, and any two non-zero maps \(f : \binom{\Omega}{n} \rightarrow \mathbb{K}, g : \binom{\Omega}{m} \rightarrow \mathbb{K} \) such that \(fg = 0 \), the transversality of \(\text{supp}(f) \cup \text{supp}(g) \) is at most \(t \).

The result follows since removal of a transversal would decrease the age, which is impossible in an inexhaustible structure.
The theorem is a Ramsey-type theorem, and one can ask for an evaluation of $\tau(m, n)$, the smallest number t for which the conclusion of the theorem is true. It is not hard to show that $\tau(1, n) = 2n$: this is the combinatorics underlying the proof that $f_n \leq f_{n+1}$.
The theorem is a Ramsey-type theorem, and one can ask for an evaluation of $\tau(m, n)$, the smallest number t for which the conclusion of the theorem is true. It is not hard to show that $\tau(1, n) = 2n$: this is the combinatorics underlying the proof that $f_n \leq f_{n+1}$.

Pouzet’s proof shows that

$$7 \leq \tau(2, 2) \leq 2(R_k^2(4) + 2),$$

where $k = 5^{30}$ and $R_k^2(4)$ is the classical Ramsey number, the least p such that in any k-colouring of the edges of the complete graph on p vertices, there is a monochromatic subgraph of order 4.
Ramsey numbers

The theorem is a Ramsey-type theorem, and one can ask for an evaluation of \(\tau(m, n) \), the smallest number \(t \) for which the conclusion of the theorem is true. It is not hard to show that \(\tau(1, n) = 2n \): this is the combinatorics underlying the proof that \(f_n \leq f_{n+1} \).

Pouzet’s proof shows that

\[
7 \leq \tau(2, 2) \leq 2(R_k^2(4) + 2),
\]

where \(k = 5^{30} \) and \(R_k^2(4) \) is the classical Ramsey number, the least \(p \) such that in any \(k \)-colouring of the edges of the complete graph on \(p \) vertices, there is a monochromatic subgraph of order 4.

This is rather a large gap – can it be reduced?
Where next?

The conjecture that, if R is inexhaustible, then e is prime in $A(R)$, remains to be proved.
Where next?

The conjecture that, if R is inexhaustible, then e is prime in $A(R)$, remains to be proved.

A more interesting possibility involves showing that, under suitable hypotheses to be determined, if $f_1, \ldots, f_r \in V_n$ and $g_1, \ldots, g_r \in V_m$ are linearly independent, then

$$f_1g_1 + \cdots + f_rng_r \neq 0.$$
The conjecture that, if \(R \) is inexhaustible, then \(e \) is prime in \(A(R) \), remains to be proved.

A more interesting possibility involves showing that, under suitable hypotheses to be determined, if \(f_1, \ldots, f_r \in V_n \) and \(g_1, \ldots, g_r \in V_m \) are linearly independent, then

\[
f_1g_1 + \cdots + f_rg_r \neq 0.
\]

If this were true, the dimension argument would give a much stronger lower bound for \(f_{m+n} \) in terms of \(f_m \) and \(f_n \).
The conjecture that, if R is inexhaustible, then e is prime in $A(R)$, remains to be proved.

A more interesting possibility involves showing that, under suitable hypotheses to be determined, if $f_1, \ldots, f_r \in V_n$ and $g_1, \ldots, g_r \in V_m$ are linearly independent, then

$$f_1g_1 + \cdots + f_r g_r \neq 0.$$

If this were true, the dimension argument would give a much stronger lower bound for f_{m+n} in terms of f_m and f_n.

But it cannot be true in general since the earlier bound is tight in some cases!