Optimal designs and root systems

Peter J. Cameron

British Combinatorial Conference13 July 2007

Block designs

A block design consists of a set of \(v \) points and a set of blocks, each block a \(k \)-set of points.

I will assume that it is a 1-design, that is, each point lies in \(r \) blocks. (More general versions of what follows hold without this assumption.) Then the number of blocks is \(b = \frac{vr}{k} \).

The incidence matrix \(N \) of the block design is the \(v \times b \) matrix with \((p, b)\) entry 1 if \(p \in B \), 0 otherwise. The matrix \(\Lambda = NN^\top \) is the concurrence matrix, with \((p, q)\) entry equal to the number of blocks containing \(p \) and \(q \). It is symmetric, with row and column sums \(rk \), and diagonal entries \(r \).

Optimality

The information matrix of the block design is \(L = rl - \Lambda/k \). It has a “trivial” eigenvalue 0, corresponding to the all-1 eigenvector.

The design is called

- **A-optimal** if it maximizes the harmonic mean of the non-trivial eigenvalues;
- **D-optimal** if it maximizes the geometric mean of the non-trivial eigenvalues;
- **E-optimal** if it maximizes the smallest non-trivial eigenvalue

over all block designs with the given \(v, k, r \).

A 2-design is optimal in all three senses. But what if no 2-design exists for the given \(v, k, r \)?

The question

For a 2-design, the concurrence matrix is \(\Lambda = (r - \lambda)I + \lambda J \), where \(J \) is the all-1 matrix. Ching-Shui Cheng suggested looking for designs where \(\Lambda \) is a small perturbation of this, say \(\Lambda = (r - t)I + tJ - A \), where \(A \) is a matrix with small entries (say 0, +1, −1). For E-optimality, we want \(A \) to have smallest eigenvalue as large as possible (say greater than \(-2\)).

So we want a square matrix \(A \) such that

- \(A \) has entries 0, +1, −1;
- \(A \) is symmetric with zero diagonal;
- \(A \) has constant row sums \(c \);
- \(A \) has smallest eigenvalue greater than \(-2\).

Call such a matrix admissible.

Root systems

If \(A \) is admissible, then \(2I + A \) is positive definite, so is a matrix of inner products of a set of vectors in \(\mathbb{R}^n \).

These vectors form a subsystem of a root system of type \(A_n, D_n, E_6, E_7 \) or \(E_8 \) (as in the classification of simple Lie algebras by Cartan and Killing). Indeed, they form a basis for the root system.

(This idea was originally used by Cameron, Goethals, Seidel and Shult in 1979 for graphs with least eigenvalue \(\geq -2 \).)

So we try to determine the admissible matrices by looking for subsets of the root systems.
The case A_n

The vectors of A_n are of the form $e_i - e_j$ for $1 \leq i, j \leq n + 1, i \neq j$, where e_1, \ldots, e_{n+1} form a basis for \mathbb{R}^{n+1}.

So an admissible matrix of this type is represented by a tree with oriented edges. (We have an edge $j \rightarrow i$ if $e_i - e_j$ is in our subset.)

An oriented tree gives an admissible matrix if and only if
\[s(w) - s(v) = c + 2\]
for any edge $v \rightarrow w$, where $s(v)$ is the signed degree (number of edges in minus number out) and c is the constant row sum.

Here is an example (edges directed upwards).

\[
\begin{pmatrix}
0 & - & + & + & - & - & + & - \\
- & 0 & - & + & + & - & + & - \\
+ & - & 0 & + & - & - & 0 & 0 \\
+ & - & + & 0 & - & - & 0 & 0 \\
- & + & - & - & 0 & + & 0 & 0 \\
- & + & - & - & + & 0 & 0 & 0 \\
+ & - & 0 & 0 & 0 & 0 & 0 & - \\
- & + & 0 & 0 & 0 & 0 & - & 0
\end{pmatrix}
\]

Conclusion

Having determined the matrices, we can use Leonard Soicher’s DESIGN software to look for block designs. Many examples exist.

An example in E_6 has point set $\{1, 2, 3, 4, 5, 6\}$ and blocks

\[
\{123, 125, 125, 134, 136, 136, 146, 156, 234, 245, 246, 246, 256, 345, 345, 356\}.
\]

The next step would be to go on and decide whether any E-optimal block designs are obtained in this way. This has not yet been done!

The case D_n

The vectors of D_n are those of the form $\pm e_i \pm e_j$ for $1 \leq i < j \leq n$, where e_1, \ldots, e_n form an orthonormal basis for \mathbb{R}^n.

This case is a bit more complicated. An admissible matrix is represented by a unicyclic graph, whose edges are either directed (if of form $e_i - e_j$) or undirected and signed (if of the form $\pm (e_i + e_j)$).

A similar condition for constant row sum can be formulated.

Here is an example:

The case E_n

There are three exceptional root systems not of the above form, in 6, 7 and 8 dimensions, called E_6, E_7 and E_8.

By a computer search, the numbers of admissible matrices which occur in these root systems are 2, 3, 12 respectively.