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Abstract

We study the covering radius of sets of permutations with respect to the Hamming
distance. Let f(n, s) be the smallest number m for which there is a set of m permu-
tations in Sn with covering radius r ≤ n − s. We study f(n, s) in the general case
and also in the case when the set of permutations forms a group.

We find f(n, 1) exactly and bounds on f(n, s) for s > 1. For s = 2 our bounds
are linear in n. This case relates to classical conjectures by Ryser and Brualdi on
transversals of Latin squares and to more recent work by Kezdy and Snevily. We
discuss a flaw in Derienko’s published proof of Brualdi’s conjecture. We also show
that every Latin square contains a set of entries which meets each row and column
exactly once while using no symbol more than twice.

In the case where the permutations form a group, we give necessary and sufficient
conditions for the covering radius to be exactly n. If the group is t-transitive, then
its covering radius is at most n − t, and we give a partial determination of groups
meeting this bound.

We give some results on the covering radius of specific groups. For the group
PGL(2, q), the question can be phrased in geometric terms, concerning configura-
tions in the Minkowski plane over GF(q) meeting every generator once and every
conic in at most s points, where s is as small as possible. We give an exact answer
except in the case where q is congruent to 1 mod 6.

The paper concludes with some remarks about the relation between packing and
covering radii for permutations.
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1 Introduction

Let S be a subset of a finite metric space M , in which all the distances are
integers. The covering radius cr(S) of S is the smallest R such that the balls
of radius R with centres at the elements of S cover the whole space. Compare
this with the packing radius, the largest r such that the balls of radius r with
centres at the elements of S are pairwise disjoint. Under mild assumptions on
the metric space, we have r ≤ R.

Alternatively, if we define d(x, S) = mins∈S d(x, s), then the covering radius is
the maximum of d(x, S) over all points x in the space.

The “main problem” of coding theory is to find the largest set S with given
packing radius. One question considered here is the dual problem: to find the
smallest set with given covering radius. We also consider briefly (in the last
section) the problem of bounding the covering radius by a function of the
packing radius.

The metric space here is the symmetric group Sn, with Hamming distance:
the distance between g and h is n− fix(gh−1). Note that it is invariant under
left and right translation. The symmetric group has been studied as a setting
for coding theory since the paper of Blake et al. [2]; but little attention has
been given to questions about covering radius.

We write ig for the image of i ∈ {1, . . . , n} under g ∈ Sn (regarding g as a
function). The passive form of g is the word 1g2g · · ·ng.

There is one small complication: since no two permutations have Hamming
distance 1, a ball of radius 1 consists of a single element. So, according to the
definition, if S contains two permutations at distance 2, its packing radius
is 1. To simplify things later, we disallow balls of radius 1 and assume that in
this case the packing radius is 0.

Much more about covering radius can be found in the book [5], although the
context is different.

We begin with a result of Cameron and Ku [4] and, independently, Kézdy and
Snevily [14].

Theorem 1 Let S be a set of permutations. If |S| ≤ n/2, then cr(S) = n. This
is best possible: if k > n/2, then there exists S with |S| = k and cr(S) < n.

PROOF. Suppose that |S| = k ≤ n/2. To show that S has covering radius n,
we must find a permutation g such that g has no agreements with any of the
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permutations in S. So let

Ai = {1, . . . , n} \ {ih : h ∈ S}.

Then by assumption |Ai| ≥ n − k for all i. The required permutation will
be a system of distinct representatives for (A1, . . . , An); so we must verify
that the hypotheses of Hall’s theorem are satisfied. So, for J ⊆ {1, . . . , n}, let
A(J) =

⋃
i∈J Ai. We must show that |A(J)| ≥ |J | for any set J .

This statement is clearly true if |J | ≤ n− k, so suppose that |J | > n− k ≥ k.
An arbitrary element j occurs k times as the image of a permutation in S, so
has at least n − k occurrences in the sets Ai. So any given set of more than
k of them must contain an occurrence of j. So A(J) = {1, . . . , n}, and clearly
the conclusion holds.

To show that this is best possible, suppose that k ≤ n < 2k. Take a Latin
square of order k, and extend each of its rows to a permutation of {1, . . . , n}
fixing the points k + 1, . . . , n. Now the sets A1, . . . , Ak each consist of the
points k + 1, . . . , n; so A({1, . . . , k}) = {k + 1, . . . , n}, and Hall’s condition
fails. If k > n, then take n permutations chosen as above; adding any k − n
further permutations cannot increase the covering radius. 2

2 Smallest set with at least a given covering radius

2.1 The problem

Theorem 1 suggests the following problem:

Problem 2 Given n and s, what is the smallest m such that there is a set S
of permutations with |S| = m and cr(S) ≤ n − s? We let f(n, s) denote this
minimum value m.

Of course, it is equivalent to consider the function g(n, s) defined to be the
largest number m such that any set S of at most m permutations of an n-set
has covering radius at least n− s. Clearly f(n, s) = g(n, s− 1) + 1. In coding
theory the analogue of the function f is usually considered; but in other parts
of extremal combinatorics such as Ramsey theory, the function considered is
the analogue of g.

We note also that this question can be interpreted in graph-theoretic language.
Define the graph Gn,s on the vertex set Sn, with two permutations being adja-
cent if they agree in at least s places. Now the size of the smallest dominating
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set in Gn,s is f(n, s).

Theorem 1 shows that f(n, 1) = bn/2c+1. Since any two distinct permutations
have distance at least 2, we see that f(n, n − 1) = n! for n ≥ 2. Moreover,
f(n, s) is a monotonic increasing function of s (by definition).

The next case to consider is f(n, 2). Kézdy and Snevily [14] made the following
conjecture, which we consider further in the next subsection.

Conjecture 3 If n is even, then f(n, 2) = n; if n is odd, then f(n, 2) > n.

We conclude this section by extending the argument of Theorem 1 to give a
very weak lower bound for f(n, 2), improving by 1 the trivial f(n, 2) ≥ f(n, 1).

Proposition 4 f(n, 2) ≥ bn/2c+ 2 for n > 2.

PROOF. Assume first that n is odd, say n = 2k + 1, and let S be a set
of permutations with |S| = k + 1. As in Theorem 1, we have |A(J)| ≥ k for
all non-empty J , and A(J) = {1, . . . , n} if |J | ≥ k + 2. So the only possible
failure of Hall’s condition is that there could be a set J with |J | = k + 1 and
|A(J)| = k. Now |A(J)| ≥ |J | − 1 for all sets J . By the ‘defect form’ of Hall’s
Theorem, there is a partial SDR of size n − 1. This extends uniquely to a
permutation, which agrees with any element of S in at most one position.

Now assume that n = 2k and |S| = k + 1. The argument using the defect
form of Hall’s theorem can only fail if there is a set J with |J | = k + 1
and |A(J)| = k − 1. Suppose without loss of generality that J = {1, . . . , k +
1} and A(J) = {k + 2, . . . , 2k}. Then the matrix with rows S has a Latin
square of order k + 1 in the first k + 1 columns. Choose two columns of the
Latin square, and select two cells in these columns lying in distinct rows and
containing distinct entries. (This choice is possible if k+ 1 ≥ 3.) Now let g be
any permutation with these entries in these columns, entries k + 1, . . . , 2k in
the remaining k − 1 of the first k + 1 columns, and the unused entries from
1, . . . , k + 1 in the last k − 1 columns. Then g agrees with two elements of S
in one position and the others in no positions. 2

2.2 Latin squares

The Kézdy–Snevily conjecture, described in the preceding section, has several
connections with Latin squares. The rows of a Latin square of order n form a
sharply transitive set of permutations (that is, exactly one permutation carries
i to j, for any i and j); and every sharply transitive set is the set of rows of a
Latin square.
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A transversal of a Latin square of order n is a set of n cells, one in each row,
one in each column, and one containing each symbol. A partial transversal is
a set of cells with no two in the same row or column or containing the same
symbol. The connection with covering radius is given by the following result:

Proposition 5 Let S be a sharply transitive subset of Sn. Then S has covering
radius at most n−1, with equality if and only if the corresponding Latin square
has a transversal.

PROOF. For any given position i, any permutation must agree at i with
some element of S, so the covering radius cannot exceed n − 1. If equality
holds, let h be a permutation at distance n−1 from S; then for each i there is
a unique element s ∈ S with is = ih. The positions of these agreements form
a transversal of the Latin square, since by construction they involve different
columns and symbols, and if two of them lay in the same row then that row
would have distance less than n − 1 from h. Conversely, a transversal of the
Latin square gives rise to a permutation at distance n− 1 from S. 2

Corollary 6 If there exists a Latin square of order n with no transversal,
then f(n, 2) ≤ n. In particular, this holds for n even. 2

The existence of a transversal, in the case of the Cayley table of a group,
is equivalent to the existence of a complete mapping, or orthomorphism, of
the group. Hall and Paige [13] showed that having trivial or non-cyclic Sylow
2-subgroup is necessary and (in the case of soluble groups) sufficient for this.

In particular, if n is even, the Cayley table of the cyclic group Cn of order n
has no transversal, and so f(n, 2) ≤ n. (The easy proof is as follows. Suppose
that there is a transversal, and let r, c, and s be the sums (in Cn) of the
row, columns, and symbols of the transversal. Since each row occurs once,
r = n(n+ 1)/2 = n/2. Similarly c = s = n/2. But, by definition of the Cayley
table, r + c = s, a contradiction.)

The Cayley table of Cn does possess a transversal if n is odd (the cells (i, i)
form a transversal), and has a partial transversal of size n− 1 if n is even (the
cells (i, i) for 0 ≤ i < n/2, and the cells (i, i+ 1) for n/2 ≤ i < n− 1).

It was conjectured by Ryser that a Latin square of odd order has a transversal;
this is still open. (Incidentally, the fact that a Latin square of even order has an
even number of transversals was proved by Balasubramanian [1]. The author
was aiming to prove a strong form of the Ryser Conjecture, namely that the
number of transversals of a Latin square of order n is congruent to n modulo
2. However, this conjecture and a stronger conjecture which Balasubramanian
made are easily seen to be false and a number of counter-examples of order 7
can be found, for example, in [6].)
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Note that the Kézdy–Snevily conjecture implies Ryser’s conjecture, as Kézdy
and Snevily [14] observed. This is immediate from the following result:

Proposition 7 If S is the set of rows of a Latin square L of order n with no
transversal, then S has covering radius n− 2.

PROOF. Let R,C, S be the sets of rows, columns and symbols (all equal to
{1, . . . , n}). We have to show that there is a permutation h : C → S such that,
any given row of L contains at most two cells which, for some choice of c ∈ C,
have symbol ch in column c. By taking a conjugate of L, it is equivalent to find
a permutation h : R→ C such that any given symbol s occurs at most twice
in cells of the form [r, rh] for some r ∈ R. We say for short that the symbols
L[r, rh] are selected by h, and must show that there exists a permutation h
which selects any symbol at most twice.

Take an arbitrary permutation h : R→ C. For s ∈ S, let µ(s) be the number
of r ∈ R such that L[r, rh] = s (the number of times s is selected by h). Let

M(h) =
∑

s:µ(s)>2

(µ(s)− 2).

If M(g) = 0, we are done, so suppose that there exists r0 ∈ R such that
s = L[r0, r

h
0 ] satisfies µ(s) ≥ 3.

Let I = {r ∈ R : µ(L[r0, r
h]) ≥ 2}, and J = {r ∈ R : µ(L[r, rh0 ]) = 0}. We

claim that |I| < |J |. To see this, let xi = |{s ∈ S : µ(s) = i}| be the number
of symbols selected exactly i times, for i ≥ 0. We have∑

i≥0

xi = n =
∑
i≥0

ixi,

so (since xi > 0 for some i > 2)

|J | = x0 = x2 + 2x3 + · · · > x2 + x3 + · · · = |I|.

Now choose r1 ∈ J \ I; note that r0 6= r1. Replace h by (r0, r1)h. In so doing
we deselect s = L[r0, r

h
0 ] and L[r1, r

h
1 ], and replace them with L[r0, r

h
1 ] and

L[r1, r
h
0 ]. The effect is to decrease µ(s) by at least 1 without increasing µ(s′)

for any other element s′ with µ(s′) ≥ 3 or introducing any new element with
this property. To see the last fact, we consider two cases:

(i) s′ = L[r0, r
h
1 ] 6= L[r1, r

h
0 ] = s′′. By assumption, µ(s′) ≤ 1 (since r1 /∈ I), so

s′ is selected at most once by h, and so at most twice by (r0, r1)h. Also, s′′

is not selected by h, so is selected only once by (r0, r1)h.
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(ii) s′ = L[r0, r
h
1 ] = L[r1, r

h
0 ]. Then s′ is not selected by h, so is selected twice

by (r0, r1)h.

Hence, after iterating this process a finite number of times, we must reduce
M(h) to zero, and we are done. 2

Brualdi (see [7]) conjectured that every Latin square of order n contains a
partial transversal of size n− 1 (see also Keedwell’s article on complete map-
pings in the Handbook of Combinatorial Design [6], and the article by Erdős
et al. [10]). Derienko [8] claimed to have proved this conjecture; but the proof
contains an error. In Section 2.4 we discuss this further. The following result
is due to Kézdy and Snevily [14].

Theorem 8 The Kézdy–Snevily conjecture implies Brualdi’s conjecture.

PROOF. Suppose that there is an n×n Latin square L with no near transver-
sal. Viewing the rows of L as permutations of {1, 2, . . . , n} we see that any
h ∈ Sn must either intersect at least one row in three places or intersect two
rows (say row j and row k) each in at least two places.

Append the symbol n + 1 to the end of each of the rows of L to give a set
S ′ ⊆ Sn+1. We argue that any permutation in Sn+1 agrees at least twice with
one of this set; this shows that f(n + 1, 1) ≤ n − 1, in contradiction to the
Kézdy–Snevily conjecture.

Let g ∈ Sn+1. If (n+1)g = n+1, we are done. So suppose not; let (n+1)g = p.
For the moment let p and n + 1 switch places, then drop the n + 1. Call this
new permutation g′ ∈ Sn. If g′ intersects some row of L in three or more places
then g intersects that same row in two or more places and we are done. So
g′ must intersect row j in two places and it also must intersect row k in two
places. Since L is a Latin square the symbol p can be involved in only one
of these intersections (say with row j); this implies that g and row k must
intersect in two places. 2

In Corollary 6 we used Latin squares to find an upper bound for f(n, 1) when n
is even. For odd n we can also find upper bounds based on Latin squares. The
idea is to choose a Latin square with few transversals, or whose transversals
have a particular structure, and add a small set of permutations meeting each
transversal twice. For n = 5, 7, 9, one can find a Latin square for which a single
permutation suffices, showing that f(n, 2) ≤ n+ 1 in these cases. The sets are
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as follows:

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1
1 3 4 2 5

1 2 3 4 5 6 7
2 3 1 5 4 7 6
3 1 2 6 7 4 5
4 5 6 7 1 2 3
5 4 7 1 6 3 2
6 7 4 2 3 5 1
7 6 5 3 2 1 4
3 2 1 7 6 5 4

1 3 2 4 6 5 7 9 8
2 1 3 5 4 6 8 7 9
3 2 1 7 9 8 4 6 5
4 6 5 9 8 7 1 3 2
5 4 6 8 7 9 3 2 1
6 5 4 2 1 3 9 8 7
7 9 8 1 3 2 5 4 6
8 7 9 3 2 1 6 5 4
9 8 7 6 5 4 2 1 3
5 4 6 1 3 2 9 8 7

In general, we have the following:

Theorem 9 (a) If n = 4k + 1, then f(n, 2) ≤ 5k + 2.
(b) If k is an even integer such that n/3 < k ≤ n/2 then f(n, 2) ≤ n+ k.

The theorem shows that f(n, 2) ≤ 4n/3 +O(1) for all n.

PROOF. (a) We have to construct a set of 5k + 2 permutations which have
at least two agreements with every permutation in Sn. Take a Latin square L
of order n with a subsquare of order 2k. Say it has block structure(

A B
C D

)

where A is the subsquare, which contains the ‘low’ symbols 1, . . . , 2k. Then
D contains exactly one ‘high’ symbol, ie one of (2k + 1), . . . , n, per row and
column. Call these cells D∗.

We take as our set the rows of L, plus k + 1 further permutations each of
which consists of a different row of A followed by the symbols from D∗. This
gives 5k + 2 permutations in all.

Suppose that we have a transversal of L which includes a entries from A, 2k−a
entries from each of B and C, d∗ entries from D∗ and a+ 1− d∗ entries from
the rest of D.

In order to have the right number of low symbols we must have 2a+1−d∗ = 2k,
which means that d∗ must be odd. But if d∗ > 1 then the transversal hits each
of the supplementary rows in our dominating set at least twice and we need
not worry. Hence we can assume d∗ = 1 in which case a = k.

Finally note that since we have chosen k + 1 of the 2k rows of A we must
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hit the transversal (which is choosing k of the rows) at least once with one of
them, and since d∗ = 1 this provides the second hit.

(b) Take the rows of a Latin square L with a subsquare of order k, such that
the subsquare has no transversal. Say L has the same block structure as in
part (a), where again A is the subsquare. For i = 1, 2, . . . k we add to our
collection a permutation which is the ith row of A followed by the (i+1)th row
of B (taking row numbers modulo k). We now have n+ k permutations, and
we claim that it agrees twice with each permutation. Again we only have to
worry about transversals of L. Such a transversal T has to satisfy one of the
following:

(i) T hits A but avoidsB. This is ruled out by the fact that A has no transversal.
(ii) T hits B but avoids A. In this case T must hit k cells in C as well as the k

in B. But k > n/3 means that 2k > n− k so there are not enough symbols
in the square to allow this.

(iii) T hits both A and B. In this case there must be some i such that T hits
the ith row of A but the (i+ 1)th row of B, and hence will score two hits on
the ith auxiliary row. 2

2.3 Further results

We can give lower bounds for f(n, s) for large n by using the covering bound.
Let B(n, k) be the number of permutations in the ball of radius k about the
identity in Sn (the set of permutations with at least n − k fixed points). We
have

B(n, k) =
k∑
i=0

(
n

i

)
d(i),

where d(i) is the number of derangements in Si. Clearly, if mB(n, d) < n!,
then any set of m permutations has covering radius at least d+ 1. Hence:

Proposition 10 f(n, s) ≥
⌊

n!− 1

B(n, n− s)

⌋
+ 1. 2

For example, the lower bound for f(5, 3) given by this formula is b119/11c+1 =
11; this can be improved by one as follows. Take any set S of eleven permu-
tations in S5. By the Pigeonhole Principle, at least six of them have the same
parity; say there are 11 −m such, with m ≤ 5. Then the m permutations of
the opposite parity differ by transpositions from at most 10m further permu-
tations of the given parity. If S has covering radius 2, then all 60 permutations
of this parity are accounted for, which implies that 11−m+ 10m ≥ 60, con-
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tradicting m ≤ 5. So S has covering radius at least 3. Thus f(5, 3) ≥ 12. (This
result was also proved by Quistorff [15]. We are grateful to the referee for this
information.)

However, sometimes this bound gives weaker results than those we already
know. For example, B(n, n − 1) is approximately n!(1 − 1/e), so the lower
bound for f(n, 1) is only 2 (the true value being bn/2c + 1). More generally,
the lower bound for f(n, s) depends only on s for large enough n. For example,
f(n, 3) ≥ 13 for n ≥ 6.

Here are some techniques to give upper bounds for f(n, s). First, we have the
following recursive bound:

Proposition 11 For s > 0, we have

f(n, s) ≤ nf(n− 1, s− 1).

PROOF. Let S0 be a set of f(n − 1, s − 1) permutations of {1, . . . , n − 1}
having covering radius at most n−s (with the permutations written in passive
form). Let Si be obtained from S0 by using the symbols {1, . . . , n} \ {i} in
place of {1, . . . , n− 1}. Precede each permutation in Si by the symbol i, and
let S be the union of all these sets. Clearly |S| = n|S0|. Now let h be any
permutation. Let 1h = i. By assumption, h (with the first symbol deleted)
agrees with some element of Si in at least s − 1 places; so it agrees with the
corresponding element of S in at least s places. Thus cr(S) ≤ n − s, proving
the result. 2

This gives an upper bound of about n2/2 for f(n, 2), far worse than Theorem 9.

The covering bound, combined with a probabilistic argument, gives anO(n log n)
upper bound for f(n, s), for any fixed s.

Proposition 12 f(n, s) ≤ e(s+ 1)!n log n provided n ≥ 2s+ 3.

PROOF. The complement of the ball of radius n−s−1 in Sn has cardinality
n! q, where q is a function of n and s (although the dependence on n is asymp-
totically negligible). Specifically, with d(n) the number of derangements of an
n-set, we have:

q=
1

n!

s∑
i=0

(
n

i

)
d(n− i) =

s∑
i=0

1

i!

d(n− i)
(n− i)!
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<
s∑
i=0

1

i!

(1

e
+

1

(n− s+ 1)!

)
<
(
e− 1

(s+ 1)!
− 1

(s+ 2)!

)(1

e
+

1

(n− s+ 1)!

)
< 1− 1

e(s+ 1)!
+

e

(n− s+ 1)!
− 1

e(s+ 2)!

< 1− 1

e(s+ 1)!
. (1)

The last inequality relies on the assumption that n ≥ 2s+ 3.

Choose a fixed permutation h ∈ Sn. If x is a random permutation, the proba-
bility that h is not within distance n−s−1 of x is thus q. Hence, if x1, . . . , xm
are independent random permutations, the probability that h is not within
distance n− s− 1 of any of them is qm. So the expected number of permuta-
tions uncovered by m balls of radius n− s− 1 with random centres is n! qm. If
this is less than 1, then there is a set of points of cardinality m with covering
radius at least n− s, and so f(n, s) ≤ m. Taking m = e(s+ 1)!n log n we find
from (1) that m log q < −n log n and hence n! qm < 1 as required. 2

Another technique depends on the following observation due to C. Y. Ku
(personal communication). A set S of permutations is (≤k)-intersecting if
any two distinct permutations in the set agree in at most k positions.

Proposition 13 Let S be a maximal (≤k)-intersecting subset of Sn. Then S
has covering radius at most n− k − 1. Hence f(n, k + 1) ≤ |S|.

PROOF. Let g ∈ Sn \S. If g and h agree in at most k positions for all h ∈ S,
then S ∪ {g} is (≤k)-intersecting, contradicting the assumed maximality. So
there exists h ∈ S with d(g, h) ≤ n−k−1. Since g was arbitrary, the covering
radius of S is at most n− k − 1. The last sentence is now clear. 2

Most research to date on (≤k)-intersecting sets (for example, [9]) has concen-
trated on the largest such sets. However, to get the best from Proposition 13,
we want to know the size of the smallest maximal (≤k)-intersecting set of per-
mutations. Let m(n, k) be this number: then we have f(n, k + 1) ≤ m(n, k).

This bound is not always attained. For example, m(n, 0) = n. (The upper
bound is obvious; the lower bound comes from the fact that any set of fewer
than n mutually disjoint permutations can be extended to a set of n such, by
Hall’s theorem.) However, as we have seen, f(n, 1) = bn/2c+ 1.
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A computation using GAP [11] shows that m(5, 1) = 7, giving f(5, 2) ≤ 7.
(By contrast, the largest (≤1)-intersecting subset of S5 has size 20. We use
the GAP share package GRAPE [16] to find all cliques in the graph G5,2, up
to automorphisms of the graph.) The correct value of f(5, 2) is 6. The lower
bound is found by brute force, and the upper bound comes from the example
in the preceding subsection.

The following table gives some values of the function f(n, s) for small argu-
ments.

s n = 3 n = 4 n = 5

1 2 3 3

2 6 4 6

3 6 24 12..20

4 24 120

5 120

The values for s = 1 and s ≥ n − 1 follow from our earlier remarks, while
f(4, 2) = 4 comes from Proposition 4 and Corollary 6. The entry 12..20 means
that the value of f(5, 3) is in the range 12 to 20. The lower bound was proved
above, and the upper bound follows from the fact that the group AGL(1, 5) of
order 20 has covering radius 2 (shown in the next section), or from the bound
of Proposition 11.

2.4 On a paper of Derienko

Derienko [8] claimed to have proved Brualdi’s conjecture, but unfortunately
the proof contains an error. We now describe Derienko’s method and give an
example which shows that it fails.

Suppose that B is an order k submatrix of some Latin square L. Let R be the
set of rows of B and C be the set of its columns. A permutation φ : R 7→ C
selects (in the sense of Proposition 7) k entries of B. We say that the number
of different symbols selected by φ is the weight of φ, denoted w(φ).

Derienko claims to prove the following lemma. For every L, k and B for which
there exists a permutation φ : R 7→ C with w(φ) = k− 2, there exists another
permutation φ′ : R 7→ C with w(φ′) > k − 2.

An easy corollary of this lemma would be that for every Latin square L of
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order n there is a permutation φ mapping the rows of L to its columns such
that w(φ) > n− 2; a statement clearly equivalent to the Brualdi conjecture.

Derienko’s approach starts with a φ = φ0 of weight k−2 and applies successive
perturbations to create a sequence of permutations φ1, φ2, . . .. The perturba-
tions are chosen so that they never decrease the weight. Hence if they ever
succeed in increasing the weight we have the desired φ′.

The assumption is that w(φi) = k− 2 at the i-th stage of the process, so that
we can partition R into sets Ti and Di, of respectively cardinalities k − 2 and
2, in such a way that φ restricted to Ti selects k− 2 distinct symbols. There is
one row, which we label r, which will be in Di for all i. The other row in Di

will be denoted by ri. For a given φ0 we have several choices for T0, D0 and
r but these initial choices determine all subsequent Ti’s, Di’s, ri’s and, most
importantly, φi’s.

The perturbation employed by Derienko is simply the transposition (r, ri), so
φi+1 = (r, ri)φi. It is immediate from the definitions that w(φi+1) ≥ w(φ). If
strict inequality holds then we set φ′ = φi+1 and we are done. So assume that
w(φi+1) = w(φ), in which case we can define ri+1 to be the unique element of Ti
satisfying ri+1φ = riφi+1. We then define Di+1 = {r, ri+1} and Ti+1 = R\Di+1

and we are ready to make the next perturbation.

Since we are working with finite sets, the only way we could fail to find the
desired φ′ is if there exists distinct i and j for which φi = φj, in which case the
process will fall into an endless loop. Derienko’s proof relies on showing that
this cannot happen, which he shows in Property 8. Unfortunately it seems
that step (24) of that proof is not justified.

Moreover, the following example shows that it is possible to cycle indefinitely
with a constant weight of k − 2.

Consider the partial Latin square of order 15 shown in Fig. 1, which we take
to be B (entries not specified can be chosen arbitrarily and will be irrelevant
to what follows).

We start with r = 8, r0 = 9 and φ = φ0 being the identity permutation. Note
that w(φ) = 13, because 1 and 2 are each selected twice.

Following through the perturbation process we find that r1 = 10, φ1 = (8 9),
r2 = 12, φ1 = (8 10)(8 9) and so on. Eventually, we find that φ48 = φ0 is again
the identity permutation, so that this example disproves Derienko’s result.

The intuition behind this construction is that it is nearly symmetric between
the numerical symbols in the bottom right and the alphabetic symbols in the
top left. The first 12 steps of Derienko’s process manouvre in the bottom right

13



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 b

2 g f d

3 e f

4 e f g

5 c d g

6 d g c e

7 2 c

8 c e b g f d 1 4 6 7 2 5 3

9 3 2

10 5 3 7 4

11 7 4 3

12 7 6 5

13 6 5

14 4 6 7

15 1

Fig. 1. Counter-example to Derienko’s method

of B. After that we make the equivalent steps among the alphabetic symbols.
After 12 more steps we are back in the bottom right, undoing the steps we
first made there. Finally, we go back to the top left and undo the steps we
made there. So, after four lots of 12 perturbations we are back to where we
started.

3 Covering radius of permutation groups

Can we say more if S = G is a group? In this case we have d(g,G) = d(1, Gg−1)
for any g ∈ Sn. So G has covering radius at least n− s if and only if there is
a right coset of G in Sn consisting of elements with s or fewer fixed points.

Unexplained notation for permutation groups is mostly in [3]. One exception is
that, if X is a linear or semilinear group (a subgroup of GL(d, q) or ΓL(d, q)),
then AX denotes the corresponding affine group (the semidirect product of
the additive group of the vector space by X).
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3.1 Some general results

We begin by characterising those groups which have maximum covering radius.

Theorem 14 Let G be a subgroup of Sn. Then cr(G) = n if and only if G
has no orbit of size greater than n/2.

PROOF. Suppose first that X is an orbit of G with |X| > n/2. Let g be any
permutation in Sn. Then X ∩Xg−1 6= ∅. Choose a point x in this intersection.
Then x ∈ X and y = xg ∈ X, so there exists h ∈ G with y = xh. Then
d(g, h) ≤ n− 1, so d(g,G) ≤ n− 1. Since g was arbitrary, cr(G) ≤ n− 1.

Conversely, suppose that all G-orbits have size at most n/2. We first show the
following statement:

Let π be a partition of X. Suppose that all parts of π have size at most
|X|/2. Then there is a partition ρ of X whose parts have size at least 2,
such that |Y ∩ Z| ≤ 1 for all Y ∈ π, Z ∈ ρ.

The proof is by induction on |X|. The induction begins with the trivial case
X = ∅. For X 6= ∅, it is enough to find a set Z meeting every part of π
in at most one point, such that the induced partition of X \ Z satisfies the
hypothesis. If π has d parts of maximum size, with d > 1, then let Z contain
one point from each of these parts. If there is a unique part of maximal size,
let Z contain one point from this part and one other point.

Now apply this result with π the orbit partition of G. Let g be a permutation
whose cycle partition is ρ. For every point x ∈ {1, . . . , n}, x and xg lie in
different G-orbits, so no element of G can agree with g on x. Thus d(g,G) = n,
and so cr(G) = n. 2

The first part of the proof gives further information which is useful to us.

Proposition 15 Let G be a subgroup of Sn having an orbit X of size greater
than n/2. Let x be a point of X, and H the stabiliser of x (acting on the
remaining n − 1 points). Then cr(G) ≤ cr(H) ≤ n − 1. In particular, this
holds if G is transitive.

PROOF. Take any permutation g ∈ Sn. As in Theorem 14, there exists
y ∈ X and h ∈ G with yg = yh. There is no loss of generality in assuming that
y = x, so that gh−1 fixes x. Since distance is translation-invariant, we have

d(g,G) = d(gh−1, G) ≤ d(gh−1, H) ≤ cr(H).
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Since g was arbitrary, we have cr(G) ≤ cr(H). 2

This immediately extends to groups with higher degrees of transitivity:

Proposition 16 If G is t-transitive, then cr(G) ≤ n− t. 2

The idea behind Proposition 16 can be extended beyond t-transitive groups.
Let G be a permutation group on X = {1, . . . , n}. Define sets Yi as follows:

• Y0 = ∅;
• Let Gi be the pointwise stabiliser of Yi. If Gi has an orbit of size larger than

(n− i)/2, choose a point yi+1 in this orbit and let Yi+1 = Yi ∪ {yi+1}.

By Proposition 15, cr(Gi+1) ≤ cr(Gi). So, if r is the value of i when the
condition is no longer satisfied, we have cr(G) ≤ cr(Gr) ≤ n− r.

This result applies in particular to the class of Jordan groups (see [3, Sec-
tion 6.8] for discussion of these). A Jordan set for a permutation group G on
X is a set Y (not a singleton) such that the pointwise stabiliser of the com-
plement of Y is transitive on Y . Marggraff showed that, if G is primitive but
not symmetric or alternating, then any Jordan set Y satisfies |Y | ≥ |X|/2.
Moreover, the complements of Jordan sets in such a group are the flats of a
matroid. Hence we obtain the following result:

Proposition 17 Let G be a primitive Jordan group of degree n whose asso-
ciated matroid has rank r. Then cr(G) ≤ n− r. 2

Sometimes this bound can be further improved. For example, G = PGL(r, q)
is a Jordan group whose associated matroid is the projective space PG(r−1, q)
of rank r. So cr(G) ≤ n − r, where n = (qr − 1)/(q − 1). The stabiliser of
a basis has an orbit of size (q − 1)r−1 on the points in general position with
respect to the basis. So, if (q − 1)r−1 > (n − r)/2, then the covering radius
of G is at most n − r − 1. For any r, the inequality holds for all sufficiently
large q. For example, when r = 3, it holds for q > 4.

3.2 Maximum covering radius

In this section, we give a partial determination of the t-transitive groups of
degree n which have covering radius n− t for t ≥ 2 (that is, those which attain
the bound of Proposition 16).

First, consider the case t = 2. It follows from Theorem 14 and Proposition 15
that the orbits of the 2-point stabiliser have size at most (n− 2)/2. Using this
and the list of 2-transitive groups (see [3]), we see that the minimal normal
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subgroup of G is regular elementary abelian or is isomorphic to PSL(2, q)
(where q is an odd prime power), PSU(3, q), or a Suzuki or Ree group.

We require the following generalisation of the Orbit-Counting Lemma. A set
S of permutations of {1, . . . , n} is said to be uniformly transitive if, for any
points x, y, the number of permutations g ∈ S with xg = y is constant. Clearly
the constant value is |S|/n. (The case where the constant is 1 corresponds to
a sharply transitive set as described in the last section.) Clearly a transitive
permutation group is uniformly transitive; so taking S to be a group and g = 1
in the following result gives the Orbit-Counting Lemma.

Proposition 18 Let S be a uniformly transitive set of permutations and g an
arbitrary permutation. Then the average number of points at which an element
of S agrees with g is 1.

PROOF. Count pairs (x, h) with h ∈ S and xh = xg. For each x, the number
of h is |S|/n, where n is the degree. So the number of such pairs is equal to
|S|, and the average over S is 1 as claimed. 2

Lemma 19 Let G be a 2-transitive permutation group of degree n with cov-
ering radius n− 2. Suppose that S is a uniformly transitive subset of G. Then
|S| is even.

PROOF. If H is transitive and has covering radius n− 1, choose a permuta-
tion g at distance n− 1 from H. Then the maximum number of points where
an element of H agrees with g is 1; so we have d(g, h) = n− 1 for all h ∈ H.

Now suppose that G is 2-transitive and has covering radius n − 2. Applying
the preceding paragraph to the point stabiliser, we see that if d(g,G) = n− 2,
then any permutation h ∈ G agrees with g in 0 or 2 points.

Finally let S be a uniformly transitive subset of G. Then any element of S
agrees with g in 0 or 2 points, and the average number of agreements is 1 by
Proposition 18; so half the elements of S agree with g in no points, and half
in 2 points. Thus |S| is even. 2

A regular normal subgroup of G is a uniformly transitive subset of cardinality
n. So, if such a subgroup is a p-group, then p = 2. Consulting the list of 2-
transitive groups, and using the fact that the orbits of the 2-point stabiliser
have size at most (n − 2)/2, we find that G ≤ AΓL(1, q) or ASL(2, q) ≤
G ≤ AΓL(2, q) in this case, where q is a power of 2. (In the latter case, some
subgroups are excluded; for example, if G contains AGL(2, q), then it is a
Jordan group of rank 3.)
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We can deal with unitary groups in even characteristic and Suzuki groups
using the following result.

Lemma 20 Let G be a 2-transitive permutation group of degree n, where n is
odd. Suppose that there is an involution u in the centre of a Sylow 2-subgroup
of G which has exactly one fixed point. Then the covering radius of G is at
most n− 3.

PROOF. Since u lies in the centre of a Sylow 2-subgroup of G, the conjugacy
class C = uG containing u has odd cardinality. We claim that C is uniformly
transitive.

• Count pairs (x, g) with g ∈ C and xg = x. For each element g ∈ C there is
exactly one such point x, by assumption. So there are |C| such pairs. Now
each point x occurs equally often in such a pair, by the transitivity of G.
So there are |C|/n elements of C fixing x.
• Count triples (x, y, g) with x 6= y, g ∈ C and xg = y. For each element
g ∈ C there are n − 1 choices for x moved by g, then y is determined as
xg. So there are |C|(n− 1) such triples. Now each distinct pair (x, y) occurs
equally often in such a triple, by the 2-transitivity of G. So the number of
elements of C mapping x to y is (n− 1)|C|/n(n− 1) = |C|/n.

Now C is a uniformly transitive subset of G of odd cardinality. So the covering
radius of G cannot be n− 2, by Lemma 19. 2

Now the unitary groups PSU(3, q) with q even and the Suzuki groups have
involutions of the type required in this lemma, since the Sylow 2-subgroup of
such a group fixes a point and is regular on the remaining points. So these
cannot have covering radius n − 2, and neither can any of their overgroups.
We have proved the first part of the following result.

Theorem 21 Let G be a t-transitive permutation group of degree n with cov-
ering radius n− t.

(1) If t = 2, then one of the following occurs:
• G ≤ AΓL(1, q), where q is a power of 2;
• ASL(2, q) ≤ G ≤ AΓL(2, q), where q is a power of 2;
• G has a normal subgroup PSL(2, q) or PSU(3, q) (for q an odd prime

power) or a Ree group 2G2(q) (for q an odd power of 3).
(2) If t > 2, then one of the following occurs:
• t = 3, PGL(2, q) ≤ G ≤ PΓL(2, q), where q is a power of 2;
• t = n− 2, G = An;
• t = n, G = Sn.
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PROOF. The case t = 2 was proved above, so suppose that t > 2. Then G is
a (t− 2)-fold transitive extension of one of the groups with t = 2. Inspection
of the list of multiply transitive groups show that only the cases listed can
occur. 2

The theorem does not assert that all of the groups listed actually have covering
radius n − t. This holds trivially for symmetric and alternating groups; we
will investigate groups containing PSL(2, q) in the next section. The covering
radius of AΓL(1, 8) is equal to 5 rather than 6. We have been unable to decide
whether ASL(2, q) and the unitary or Ree groups have covering radius n− 2.

3.3 Some specific groups

The remainder of the paper gives information about the covering radius of cer-
tain groups. It follows from our remarks about Cayley tables in Subsection 2.2
that, if Cn denotes the cyclic group of order n, acting regularly, then

cr(Cn) =
{
n− 1 if n is odd,
n− 2 if n is even.

In the following result, the groups PSL(2, q) and PGL(2, q) have their usual
actions on the n = q+ 1 points of the projective line. Recall that PSL(2, q) =
PGL(2, q) if (and only if) q is a power of 2.

Theorem 22 (a) cr(PSL(2, q)) =
{
q − 1 if q is odd,
q − 2 if q is even.

(b) If q is odd, then q − 5 ≤ cr(PGL(2, q)) ≤ q − 3; and if q 6≡ 1 (mod 6),
then cr(PGL(2, q)) = q − 3.

PROOF. (a) Since PSL(2, q) is 2-transitive for q odd and 3-transitive for
q even, we see that the right-hand side is an upper bound for the covering
radius; it is enough to show that there is a permutation attaining the bound.

For q odd, an element g ∈ PGL(2, q) \ PSL(2, q) agrees with any element of
PSL(2, q) in at most two points. For if h ∈ PSL(2, q), then the points where g
and h agree are the fixed points of gh−1, and gh−1 ∈ PGL(2, q).

Now suppose that q is even. If q = 2, then PSL(2, q) = S3 has covering radius 0,
so suppose that q > 2.

Let g be the Frobenius automorphism in PΓL(2, q) (the map x 7→ x2, fixing
∞). Take any element h ∈ PSL(2, q), say h : x 7→ (ax+ b)/(cx + d). If c = 0,
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this permutation agrees with g on∞, and (assuming without loss that d = 1)
its other points of agreement satisfy ax+b = x2; this quadratic has at most two
solutions. If c 6= 0, then g and h do not agree on∞; their points of agreement
satisfy ax+ b = x2(cx+ d), and this cubic has at most three solutions.

(b) Since the 2-point stabiliser is cyclic of even order q− 1, its covering radius
is q − 3. Hence by Proposition 15, we have cr(PGL(2, q)) ≤ q − 3.

Suppose first that q 6≡ 1 (mod 6). Consider the function g : x 7→ x3 (fixing∞).
This is a permutation since, by assumption, gcd(3, q − 1) = 1. We claim that
this permutation agrees in at most four points with any element of PGL(2, q).
The proof is almost identical to that given in case (a) for q even. So the
covering radius is q − 3.

Now let q be an arbitrary odd prime power. Let g be a permutation fixing
∞ and 0 and satisfying {x,−x}g = {x2, αx2}, where α is a fixed non-square
in GF(q). Arguing as before, we see that, if h ∈ PGL(2, q) fixes ∞, then the
remaining points where g and h agree satisfy ax + b = xg, that is, either
ax+ b = x2 or ax+ b = αx2, and so there are at most four of them; if h does
not fix ∞, then the points of agreement satisfy ax+ b = x(cx+ d)xg, that is,
either ax + b = (cx + d)x2 or ax + b = α(cx + d)x2, so there are at most six
of them. So the distance from g to the group is at least q − 5. 2

Using this, we can compute the covering radius of the group AGL(1, q) (the
stabiliser of a point in PGL(2, q)) in many cases. Since the point stabiliser in
AGL(1, q) is the cyclic group Cq−1 acting regularly, we have

cr(PGL(2, q)) ≤ cr(AGL(1, q)) ≤ cr(Cq−1) ≤
{
q − 2 if q is even,
q − 3 if q is odd.

Combining this with Theorem 22 gives the following. (The lower bound in (b)
is q− 4 rather than q− 5 since, in the last part of the argument, we only have
to consider equations of the form ax+ b = x2 and ax+ b = αx2.)

Proposition 23 (a) If q is even, then cr(AGL(2, q)) = q − 2.
(b) If q is odd, then q − 4 ≤ cr(AGL(1, q)) ≤ q − 3; and if q 6≡ 1 (mod 6),
then cr(AGL(1, q)) = q − 3. 2

In particular, the group G = AGL(1, 5) of order 20 has covering radius 2,
justifying the earlier observation that f(5, 3) ≤ 20.

An obvious conjecture is that cr(PGL(2, q)) = q − 3 holds for all odd prime
powers q. Computation shows that this is true for q = 7 and q = 13; the first
value in doubt is q = 19. Choosing α = 2 in the argument in Theorem 22,
we find that, of the 29 permutations g ∈ S20 for which {x,−x}g = {x2, 2x2},
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exactly 180 satisfy d(g,PGL(2, 19)) = 15 (the rest have distance 14). So the
covering radius is at least 15. This improves by 1 the lower bound from Theo-
rem 22. No other value of α does better. Random search found no permutation
at distance 16 from the group; the problem is rather large for an exhaustive
search. Also, the covering radius of AGL(1, 19) is 16; a permutation realising
distance 16 is (2, 3)(4, 5)(6, 7)(8, 10)(9, 13)(11, 15)(12, 17)(14, 16).

The covering radius of AGL(1, q) has a geometric interpretation. We have
cr(AGL(1, q)) ≥ q − s if and only if there is a set S of q points in the affine
plane over GF(q) which meets every horizontal or vertical line in one point
and any other line in at most s points. If q is even, such a set with s = 2
is obtained from a hyperoval with two points on the line at infinity. For q
odd, our results show that such a set exists with s = 4 in general, and with
s = 3 for q 6≡ 1 mod 6 and for q = 7, 13, 19. There is a similar interpretation
for PGL(2, q) in the Minkowski plane or ruled quadric: a set of q + 1 points
meeting every generator in one point and every conic in at most s points,
where we require the least possible value of s.

A GAP computation shows that, for G = Mn, n = 9, 10, 11, 12, the covering
radius of G is equal to 6 (one less than the upper bound from Theorem 16).
Since distance is invariant under left and right translation, if G is a group
then d(g,G) is constant over the double cosets GxG for x ∈ Sn, and it is only
necessary to check a set of double coset representatives. There are eight double
cosets of M12 in S12, one of which realises distance 6. Computation also shows
that the covering radii of PGL(3, 2) and AGL(3, 2) are 4 (attaining the bound
of Proposition 17).

Another speculation suggested by these results is that there is a tendency
for a multiply-transitive group to have even covering radius. This holds for
any group which attains the bound in Proposition 16 (though we have no
direct proof of this). Computation shows that all of the 49 multiply-transitive
groups of degree at most 12 have even covering radius except for AΓL(1, 8)
and AGL(2, 3) (both with covering radius 5).

3.4 Packing and covering

As we noted earlier, pr(S) ≤ cr(S) for any set of permutations. Is there a
bound for cr(S) as a function of pr(S)?

We restrict attention to the case where S = G is a group. In general the
answer is ‘no’: if G is generated by one transposition, then pr(G) = 0 but
cr(G) = n if n ≥ 4. Even if we assume that G is transitive, there is no bound;
if G consists of all permutations fixing a partition of {1, . . . , n} into two parts
of size n/2, where n is a multiple of 4, then pr(G) = 0 but cr(G) = n/2. (Take
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a partition into four parts of size n/4 refining the given one. Now there is a
permutation fixing two parts and interchanging the other two which agrees
with any element of G in at most n/2 places.)

What if we assume that G is primitive? This looks more hopeful. We have
pr(G) = b(µ(G)− 1)/2c, where µ(G) is the minimal degree of G, the smallest
number of points moved by a non-trivial element of G. (This is the analogue
of minimum weight for a linear code). Now good bounds are known for the
minimal degrees of primitive groups. A well known theorem of Jordan asserts
that the degree of a primitive group is bounded by a function of its minimal
degree; so certainly there is a function F such that cr(G) ≤ F (pr(G)) for any
primitive group G. In particular, if pr(G) = 0, then G contains a transposition
and G = Sn with cr(G) = 0; and if pr(G) = 1, then G contains a 3-cycle or
double transposition and G = An (for n > 8), whence cr(G) = 2.

The best current result on minimal degree is the theorem of Guralnick and
Magaard [12], according to which a primitive group of degree n with minimal
degree at most n/2 is ‘known’. This suggests the possibility that there might
be a linear bound. (If G is not one of these exceptions, then we have cr(G) ≤
n−1 ≤ 2µ(G)−2 ≤ 4 pr(G)+2.) But no such bound can exist, as the following
example shows.

Let G be the symmetric group of degree m in its induced action on the set
of 2-subsets of {1, . . . ,m}, with degree n =

(
m
2

)
. This group is primitive for

m ≥ 5. The minimal degree of G is 2(m− 2), achieved by a transposition on
{1, . . . ,m}.

We assume that m ≡ 1 or 3 mod 6, so that there is a Steiner triple system of
order m. Take such a system, and orient each block arbitrarily. Then let g be
the permutation of the set of 2-subsets of {1, . . . ,m} in which {i, j} → {j, k}
if (i, j, k) is an oriented triple of the system.

Let h ∈ G. If {i, j}h = {i, j}g = {j, k}, then there are two possibilities:

(a) jh = j, ih = k;
(b) ih = j, jh = k.

There are at most m choices of {i, j} for which (b) holds, since j is determined
by i. Suppose that (a) holds. Then i is a point moved by h, and j the unique
third point on the triple containing i and ih; so there are at most m choices for
i and j in this case also. Thus g agrees with any element of G in at most 2m
points, and so cr(G) ≥

(
m
2

)
− 2m, a quadratic function of m.
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