
Notes on Algebraic Structures

Peter J. Cameron



ii



Preface

These are the notes of the second-year course Algebraic Structures I at Queen
Mary, University of London, as I taught it in the second semester 2005–2006.

After a short introductory chapter consisting mainly of reminders about such
topics as functions, equivalence relations, matrices, polynomials and permuta-
tions, the notes fall into two chapters, dealing with rings and groups respec-
tively. I have chosen this order because everybody is familiar with the ring of
integers and can appreciate what we are trying to do when we generalise its prop-
erties; there is no well-known group to play the same role. Fairly large parts of
the two chapters (subrings/subgroups, homomorphisms, ideals/normal subgroups,
Isomorphism Theorems) run parallel to each other, so the results on groups serve
as revision for the results on rings. Towards the end, the two topics diverge. In
ring theory, we study factorisation in integral domains, and apply it to the con-
struction of fields; in group theory we prove Cayley’s Theorem and look at some
small groups.

The set text for the course is my own book Introduction to Algebra, Ox-
ford University Press. I have refrained from reading the book while teaching the
course, preferring to have another go at writing out this material.

According to the learning outcomes for the course, a studing passing the
course is expected to be able to do the following:

• Give the following. Definitions of binary operations, associative, commuta-
tive, identity element, inverses, cancellation. Proofs of uniqueness of iden-
tity element, and of inverse.

• Explain the following. Group, order of a group, multiplication table for a
group, subgroups and subgroup tests, cyclic subgroups, order of an element,
Klein four group.

• Describe these examples: groups of units of rings, groups of symmetries of
equilateral triangle and square.

• Define right cosets of a group and state Lagrange’s Theorem. Explain nor-
mal subgroup, group homomorphism, kernel and image.
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• Explain the following: ring, types of rings, subrings and subring tests, ide-
als, unit, zero-divisor, divisibility in integral domains, ring homomorphism,
kernel and image.

Note: The pictures and information about mathematicians in these notes are
taken from the St Andrews History of Mathematics website:
http://www-groups.dcs.st-and.ac.uk/~history/index.html

Peter J. Cameron
April 13, 2006
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Chapter 1

Introduction

The first chapter of the notes will tell you a bit about what this subject involves,
and then will go over material that you should be familliar with: sets, relations,
functions; equivalence relations; matrices and polynomials; and permutations.

A couple of reminders about notation:

• N, Z, Q, R and C denote the natural numbers, integers, rational numbers,
real numbers, and complex numbers respectively;

• if A is an m× n matrix, then Ai j denotes the entry in the ith row and jth
column of A, for 1≤ i≤ m and 1≤ j ≤ n.

1.1 Abstract algebra
Algebra is about operations on sets. You have met many operations; for example:

• addition and multiplication of numbers;

• modular arithmetic;

• addition and multiplication of polynomials;

• addition and multiplication of matrices;

• union and intersection of sets;

• composition of permutations.

Many of these operations satisfy similar familiar laws. In all these cases, the
“associative law” holds, while most (but not all!) also satisfy the “commutative
law”.

1



2 CHAPTER 1. INTRODUCTION

The name “algebra” comes from the title of
the book Hisab al-jabr w’al-muqabala by
Abu Ja’far Muhammad ibn Musa
Al-Khwarizmi, a Persian mathematician who
lived in Baghdad early in the Islamic era
(and whose name has given us the word
‘algorithm’ for a procedure to carry out some
operation). Al-Khwarizmi was interested in
solving various algebraic equations
(especially quadratics), and his method
involves applying a transformation to the
equation to put it into a standard form for
which the solution method is known.
We will be concerned, not so much with solving particular equations, but gen-

eral questions about the kinds of systems in which Al-Khwarizmi’s methods might
apply.

Some questions we might ask include:

(a) We form C by adjoining to R an element i satisfying i2 = −1, and then
assert that the “usual laws” apply in C. How can we be sure that this is
possible? What happens if we try to add more such elements?

(b) What is modular arithmetic? What exactly are the objects, and how are the
operations on them defined? Does it satisfy the “usual laws”?

(c) What are polynomials? Do they satisfy the “usual laws”? What about ma-
trices?

(d) Do union and intersection of sets behave like addition and multiplication of
numbers? What about composition of permutations?

(e) What are the “usual laws”? What consequences do they have?

In this course we will define and study two kinds of algebraic object:

rings, with operations of addition and multiplication;

groups, with just one operation (like multiplication or composition).

Groups are in some ways simpler, having just a single operation, but rings are
more familiar since the integers make a good prototype to think about.
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1.2 Sets, functions, relations

Sets Two sets are equal if and only if they have the same members. That is,

A = B if and only if((x ∈ A)⇔ (x ∈ B)).

This means that, to prove that two sets are equal, you have to do two things:

(i) show that any element of A lies in B;

(ii) show that any element of B lies in A.

Of course, (i) means that A ⊆ B (that is, A is a subset of B), while (ii) means that
B⊆ A. So we can re-write our rule:

A⊆ B if and only if ((x ∈ A)⇒ (x ∈ B)),
A = B if and only if A⊆ B and B⊆ A.

From two sets A and B we can build new ones:

union: A∪B = {x : x ∈ A or x ∈ B};

intersection: A∩B = {x : x ∈ A and x ∈ B;

difference: A\B = {x : x ∈ A and x /∈ B};

symmetric difference: A4B = (A\B)∪ (B\A).

Cartesian product

If A and B are sets, their cartesian product
A×B is the set of all ordered pairs (a,b) for
a ∈ A and b ∈ B. The name commemorates
Descartes, who showed us that we can match
up the points of the Euclidean plane with
R×R by using cartesian coordinates: the
point x units east and y units north of the
origin is matched with the pair (x,y). Then
an equation connecting x and y describes the
set of points on some curve in the plane:
geometry meets algebra!
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Functions A function f from A to B is, informally, a “black box” such that, if
we input an element a ∈ A, then an element f (a) ∈ B is output. More formally, a
function is a set of ordered pairs (that is, a subset of the cartesian product A×B)
such that, for any a ∈ A, there is a unique b ∈ B such that (a,b) ∈ f ; we write
b = f (a) instead of (a,b) ∈ f .

The sets A and B are called the domain and codomain of f ; its image consists
of the set

{b ∈ B : b = f (a) for some a ∈ A},

a subset of the codomain.
A function f is

surjective (or onto) if, for every b ∈ B, there is some a ∈ A such that b = f (a)
(that is, the image is the whole codomain);

injective (or one-to-one) if a1 6= a2 implies f (a1) 6= f (a2) (two different elements
of A cannot have the same image);

bijective if it is both injective and surjective.

Operations An operation is a special kind of function.
An n-ary operation on a set A is a function f from An = A×·· ·×A︸ ︷︷ ︸

n times

to A.

That is, given any a1, . . . ,an ∈ A, there is a unique element b = f (a1, . . . ,an) ∈ A
obtained by applying the operation to these elements.

The most important cases are n = 1 and n = 2; we usually say unary for “1-
ary”, and binary for “2-ary”. We have already seen that many binary operations
(addition, multiplication, composition) occur in algebra.

Example Addition, multiplication, and subtraction are binary operations on
R, defined by

f (a,b) = a+b (addition),

f (a,b) = ab (multiplication),

f (a,b) = a−b (subtraction).

Taking the negative is a unary operation: f (a) =−a.
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Notation As the above example suggests, we often write binary operations,
not in functional notation, but in either of two different ways:

• infix notation, where we put a symbol for the binary operation between the
two elements that are its input, for example a + b, a− b, a · b, a ∗ b, a ◦ b,
a•b; or

• juxtaposition, where we simply put the two inputs next to each other, as ab
(this is most usually done for multiplication).

There are various properties that a binary relation may or may not have. Here
are two. We say that the binary operation ◦ on A is

• commutative if a◦b = b◦a for all a,b ∈ A;

• associative if (a◦b)◦ c = a◦ (b◦ c) for all a,b,c ∈ A.

For example, addition on R is commutative and associative; multiplication of 2×2
matrices is associative but not commutative; and subtraction is neither.

A binary operation ∗ on a finite set A can be represented by an operation table,
with rows and columns labelled by elements of A. In row a and column b we put
a∗b. Here is a small example.

∗ a b
a a b
b a a

Relations A binary relation R on A is a subset of A×A. If (a,b) ∈ R, we say
that a and b are related, otherwise they are not related, by R.

As with operations, we often use infix notation, for example a < b, a ≤ b,
a = b, a∼= b, a∼ b. But note the difference:

+ is an operation, so a+b is a member of A;

< is a relation, so a < b is an assertion which is either true or false.

Example Let A = {1,2,3}. Then the relation < on A consists of the pairs

{(1,2),(1,3),(2,3)},

while the relation ≤ consists of the pairs

{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}.

Also like operations, there are various laws or properties that a relation may
have. We say that the binary operation R on A is
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• reflexive if (a,a) ∈ R for all a ∈ A;

• irreflexive if (a,a) /∈ R for all a ∈ A;

• symmetric if (a,b) ∈ R implies (b,a) ∈ R;

• antisymmetric if (a,b) and (b,a) are never both in R except possibly if a = b;

• transitive if (a,b) ∈ R and (b,c ∈ R imply (a,c) ∈ R.

For example, < is irreflexive, antisymmetric and transitive, while ≤ is reflexive,
antisymmetric and transitive.

1.3 Equivalence relations and partitions
A binary relation R on A is an equivalence relation if it is reflexive, symmetric
and transitive.

A partition P of A is a collection of subsets of A having the properties

(a) every set in P is non-empty;

(b) for every element a ∈ A, there is a unique set X ∈ P such that a ∈ X .

The second condition says that the sets in P cover A without overlapping.

The first important fact we meet in the course is this:

Equivalence relations and partitions are essentially the same thing.
Any equivalence relation on a set gives us a partition of the set, and
any partition comes from a unique equivalence relation.

We will state this as a theorem after the next definition.
Let R be an equivalence relation on a set A. For any a ∈ A, we define the

equivalence class of a to be the set of all elements related to a: that is,

R(a) = {b ∈ A : (a,b) ∈ R}.

If we don’t need to mention the name of the equivalence relation, we may denote
the equivalence class of a by [a].
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Theorem 1.1 If R is an equivalence relation on a set A, then the equivalence
classes of A form a partition of A.

Conversely, if P is a partition of A, then there is a unique equivalence relation
R on A for which P is the set of equivalence classes of R.

Proof First, let R be an equivalence relation on A, and let P be the set of equiva-
lence classes of R: that is, P = {R(a) : a ∈ A}. We have to show two things.

(a) First we show that the members of P are all non-empty. Take an equivalence
class, say R(a). By the reflexive law, (a,a) ∈ R; then, by definition, a ∈
R(a). So R(a) is not empty.

(b) Now take any element a ∈ A; we must show that a lies in exactly one equiv-
alence class. From what we just did, we know that a lies in the equivalence
class R(a); so we have to show that, if a lies in another class, say, R(b), then
R(b) = R(a). Since a ∈ R(b), we know that (b,a) ∈ R. According to the
rule for proving two sets equal, we have two things to do:

(i) Take x ∈ R(a). By definition, (a,x) ∈ R. We know that (b,a) ∈ R.
Applying the transitive law, we see that (b,x)∈ R, that is, x∈ R(b). So
R(a)⊆ R(b).

(ii) Take x ∈ R(b). By definition, (b,x) ∈ R. We know that (b,a) ∈ R,
and so by the symmetric law, (a,b) ∈ R. Then by the transitive law,
(a,x) ∈ R, so x ∈ R(a). Thus, R(b)⊆ R(a).

These two arguments allow us to conclude that R(a) = R(b), and we are
done.

·a
·b

If (a,b) ∈ R, then R(a) = R(b).

Now we prove the converse. Suppose that P is a partition of A. We define a
binary relation R on A by the rule that

(a,b) ∈ R if and only if a,b ∈ X for some set X ∈ P.

We have to show that R is an equivalence relation, that is, to check the three laws.

reflexive: Take any a ∈ A. Since P is a partition, a lies in some set X ∈ P. Then
a,a ∈ X , so (a,a) ∈ R by definition.
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symmetric: Suppose that (a,b) ∈ R. Then a,b ∈ X for some X ∈ P. Since the
order doesn’t matter, it follows that (b,a) ∈ R.

transitive: Suppose that (a,b) ∈ R and (b,c) ∈ R. Then there are sets X ,Y ∈ P
such that a,b ∈ X , b,c ∈ Y . Now P is a partition, so b lies in a unique set of
P. This means that X = Y . Now a,c ∈ X , so (a,c) ∈ R.

Finally we have to show that, for this relation R, the equivalence classes are
the sets in P. Let a ∈ A, and let X be the unique set of P which contains a. We
have to show that X = R(a). As usual, there are two jobs:

if b ∈ X , then a,b ∈ X , so (a,b) ∈ R, so b ∈ R(a).

if b ∈ R(a), then (a,b) ∈ R, so there is some Y ∈ P with a,b ∈ Y . But there
is a unique set X ∈ P containing a, so Y = X , whence b ∈ X .

Thus X = R(a) as required.

Example 1 Let f : A→ B be a function. Define a relation R on A by the rule that
(a1,a2) ∈ R if and only if f (a1) = f (a2). Then f is an equivalence relation. (It is
completely straightforward to show that R is reflexive, symmetric and transitive:
try it!) There is a bijection between the equivalence classes of R and the points in
the image of the function f .

For example, let A = B = {1,2,3,4,5} and let f (x) = x2−6x+10. Calculation
gives

x 1 2 3 4 5
f (x) 5 2 1 2 5

So the equivalence classes of the relation R are {1,5}, {2,4}, and {3}.

Example 2 Let n be a positive integer. Recall that two integers x and y are con-
gruent modulo n, written x≡ y (mod n), if n divides y−x. This is an equivalence
relation:

reflexive: n divides 0 = x− x, so x≡ x (mod n).

symmetric: Suppose that x ≡ y (mod n), so that n divides y− x. Then n divides
−(y− x) = x− y, so y≡ x (mod n).

transitive: Suppose that x≡ y (mod n) and y≡ z (mod n). Then n divides y−x
and z− y, so divides (y− x)+(z− y) = (z− x); hence x≡ z (mod n).
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The equivalence classes of this relation are the congruence classes modulo n.
Sometimes we write the equivalence class of x modulo n as [x]n. Thus,

[x]n = {. . . ,x−2n,x−n,x,x+n,x+2n,x+3n, . . .},

an infinite set. The total number of equivalence classes is n; the classes are
[0]n, [1]n, . . . , [n−1]n (and then they repeat: [n]n = [0]n).

A representative of an equivalence class is just an element of the class. The
system is completely egalitarian: anyone can be the class representative! As we
have seen, if b ∈ R(a), then R(a) = R(b). A semphset of representatives for R is a
set of elements, one from each equivalence class.

Sometimes there is a particularly nice way to choose the representatives, in
which case they are called canonical. (This is not a mathematical term, since we
have to decide what we mean by “nice”!) For example, the integers {0,1, . . . ,n−
1} form a canonical set of representatives for congruence modulo n.

1.4 Matrices
You should be familiar with matrices, and with the rules for adding and multiply-
ing them. Usually, the entries of matrices are numbers, but we will take a more
general view. Thus, if S is any set, then Mm×n(S) means the set of all m×n matri-
ces whose entries belong to S; a matrix is just an rectangular array with elements
of S in the positions. We denote the element in row i and column j of the matrix A
by Ai j. in the case of square matrices, with m = n, we simply write Mn(S).

The rules for matrix operations are:

addition: if A and B are two m× n matrices, then A + B = C means that Ci j =
Ai j + Bi j for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that this requires us to have
a binary operation called “addition” on the set S. Note too that the two
occurrences of + here have different meanings: A+B defines the operation
of addition of matrices, while Ai j +Bi j is the given operation of addition on
S.

multiplication: suppose that A ∈Mm×n(S) and B ∈Mn×p(S), that is, the number
of columns of A is the same as the number of rows of B. Then AB = D
means that

Di j =
n

∑
k=1

AikBk j

for 1≤ i≤m, 1≤ j≤ p. This is more complicated than addition. In order to
be able to multiply two matrices, we need both addition and multiplication
to be defined on the elements of S. Also, we must be able to add together n
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elements of S, even though + is a binary operation. We will look further at
how to do this later.

Remember that there are conditions on the sizes of the matrices for these rules
to work: we can only add two matrices if they have the same size; and we can
only multiply two matrices if the number of columns of the first is equal to the
number of rows of the second. In particular, for n×n matrices, both addition and
multiplication are defined.

Properties of addition and multiplication for matrices depend on properties of
addition and multiplication for S.

For example, let us prove the associative law for matrix multiplication. Sup-
pose, for convenience, that A,B,C ∈ Mn(R), so that we can use all the familiar
properties of addition and multiplication of real numbers. Then

((AB)C)i j =
n

∑
k=1

(AB)ikCk j

=
n

∑
k=1

n

∑
l=1

AilBlkCk j,

(A(BC))i j =
n

∑
k=1

Aik(BC)k j

=
n

∑
k=1

n

∑
l=1

AikBklCl j.

These two expressions differ only by swapping the names of the “dummy vari-
ables” k and l, so are equal.

If you are not entirely comfortable with dummy variables, write out (in the
case n = 2 the four terms in each of the two sums (with i and j fixed, but k and l
each taking the values 1 and 2) and check that the results are the same.

1.5 Polynomials
Again, for the moment, the coefficients of a polynomial will be numbers; but we
will generalise this later.

If you think that you know what a polynomial is, answer the following ques-
tions:

Is 1x2 +0x+2 the same polynomial as x2 +2?

Is 0x3 + x2 +2 the same polynomial as x2 +2? What is its degree?

Is y2 +2 the same polynomial as x2 +2?
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I hope you answered “yes” to all these questions, and said that the degree is 2 in
the second case. But these examples show that defining polynomials is going to
be a bit complicated! So we defer this, and pretend for the moment that we know
what a polynomial is. A first attempt at a definition would probably go: it is an
expression of the form

n

∑
k=0

akxk,

where we can add or delete zero terms without changing the polynomial, and xk is
short for 1xk. The degree of the polynomial is the exponent of the largest power of
x which has a non-zero coefficient. And finally, changing the name of the variable
doesn’t change the polynomial.

The rules for addition and multiplication are:

addition: if f (x) = ∑akxk and g(x) = ∑bkxk, we can assume that both sums run
from 0 to n (by adding some zero terms to one polynomial if necessary);
then

f (x)+g(x) =
n

∑
k=0

(ak +bk)xk.

multiplication: (
n

∑
k=0

akxk

)(
m

∑
k=0

bkxk

)
=

n+m

∑
k=0

dkxk,

with

dk =
k

∑
l=0

albk−l,

where any terms in this sum whose subscripts are outside the correct range
are taken to be zero.

If this seems complicated, the rules are simply capturing the usual way of
adding and multiplying polynomials. There is nothing mysterious here!

Addition and multiplication of real polynomials are commutative and associa-
tive operations.

1.6 Permutations
Let X be any set. A permutation of X is a function g : X → X which is one-to-one
and onto, that is, a bijection from X to X .

There are several common notations for a permutation of the set {1, . . . ,n}.
We illustrate these with the permutation of {1,2,3,4,5,6} which maps 1 → 3,
2→ 4, 3→ 5, 4→ 2, 5→ 1 and 6→ 6.
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Two-line notation: We write the numbers 1, . . . ,n in a row, and under each num-
ber we put its image under the permutation. In the example, this gives(

1 2 3 4 5 6
3 4 5 2 1 6

)
.

One-line notation: We write just the second line of the two-line form. In the
example, this would be (3 4 5 2 1 6).

Cycle notation: We take the first point of the set, and follow what happens to
it as we apply the permutation repeatedly. Eventually we return to the
starting point. When this happens, we write the points and its images in
a bracket, representing the cycle. If not every point is included, we repeat
with a new point and produce another cycle, until no points are left. A point
which is fixed by the permutation (mapped to itself) lies in a cycle of size 1;
sometimes we don’t write such cycles. In our example, this would give
(1,3,5)(2,4)(6), or just (1,3,5)(2,4) if we choose to omit the cycle (6).

Let Sn be the set of all permutations of the set {1, . . . ,n}. We have

|Sn|= n! = n(n−1)(n−2) · · ·1.

For consider the two-line representation. The top row is (12 . . . n). The bottom
row consists of the same numbers in any order. Thus there are n possibilities for
the first entry in the bottom row; n−1 possibilities for the second (anything except
the first), n−2 possibilities for the third; and so on.

Now we define an operation on permutations as follows. If g is a permutation,
denote the image of the element x ∈ {1, . . . ,n} by xg. (Warning: we write the
function on the right of its input. That is, xg, not g(x) as you might expect.) Now
if g and h are two permutations, their composition g1g2 is defined by

x(gh) = (xg)h for all x ∈ {1, . . . ,n}.

In other words the rule is “apply g, then h”.
For example, if g is the permutation (1,3,5)(2,4)(6) in our above example,

and h = (1,2,3,4,5,6), then gh = (1,4,3,6)(2,5). You are strongly urged to
practice composing permutations given in cycle form!



Chapter 2

Rings

2.1 Introduction
A ring can be thought of as a generalisation of the integers, Z. We can add and
multiply elements of a ring, and we are interested in such questions as factorisation
into primes, construction of “modular arithmetic”, and so on.

2.1.1 Definition of a ring
Our first class of structures are rings. A ring has two operations: the first is
called addition and is denoted by + (with infix notation); the second is called
multiplication, and is usually denoted by juxtaposition (but sometimes by · with
infix notation).

In order to be a ring, the structure must satisfy certain rules called axioms. We
group these into three classes. The name of the ring is R.

We define a ring to be a set R with two binary operations satisfying the fol-
lowing axioms:

Axioms for addition:

(A0) (Closure law) For any a,b ∈ R, we have a+b ∈ R.

(A1) (Associative law) For any a,b,c∈ R, we have (a+b)+c = a+(b+c).

(A2) (Identity law) There is an element 0 ∈ R with the property that a+0 =
0 + a = a for all a ∈ R. (The element 0 is called the zero element of
R.)

(A3) (Inverse law) For any element a ∈ R, there is an element b ∈ R satis-
fying a+b = b+a = 0. (We denote this element b by −a, and call it
the additive inverse or negative of a.)

13
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(A4) (Commutative law) For any a,b ∈ R, we have a+b = b+a.

Axioms for multiplication:

(M0) (Closure law) For any a,b ∈ R, we have ab ∈ R.

(M1) (Associative law) For any a,b,c ∈ R, we have (ab)c = a(bc).

Mixed axiom:

(D) (Distributive laws) For any a,b,c ∈ R, we have (a+b)c = ac+bc and
c(a+b) = ca+ cb.

Remarks 1. The closure laws (A0) and (M0) are not strictly necessary. If + is
a binary operation, then it is a function from R×R to R, and so certainly a +b is
an element of R for all a,b ∈ R. We keep these laws in our list as a reminder.

2. The zero element 0 defined by (A2) and the negative −a defined by (A3)
are not claimed to be unique by the axioms. We will see later on that there is only
one zero element in a ring, and that each element has only one negative.

Axioms (M0) and (M1) parallel (A0) and (A1). Notice that we do not require
multiplicative analogues of the other additive axioms. But there will obviously be
some rings in which they hold. We state them here for reference.

Further multiplicative properties

(M2) (Identity law) There is an element 1 ∈ R such that a1 = 1a = a for all
a ∈ R. (The element 1 is called the identity element of R.)

(M3) (Inverse law) For any a∈R, if a 6= 0, then there exists an element b∈R
such that ab = ba = 1. (We denote this element b by a−1, and call it
the multiplicative inverse of a.)

(M4) (Commutative law) For all a,b ∈ R, we have ab = ba.

A ring which satisfies (M2) is called a ring with identity; a ring which satisfies
(M2) and (M3) is called a division ring; and a ring which satisfies (M4) is called
a commutative ring. (Note that the term “commutative ring” refers to the fact that
the multiplication is commutative; the addition in a ring is always commutative!)
A ring which satisfies all three further properties (that is, a commutative division
ring) is called a field.
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2.1.2 Examples of rings

1. The integers
The most important example of a ring is the set Z of integers, with the usual

addition and multiplication. The various properties should be familiar to you; we
will simply accept that they hold. Z is a commutative ring with identity. It is not a
division ring because there is no integer b satisfying 2b = 1. This ring will be our
prototype for several things in the course.

Note that the set N of natural numbers, or non-negative integers, is not a ring,
since it fails the inverse law for addition. (There is no non-negative integer b such
that 2+b = 0.)

2. Other number systems
Several other familiar number systems, namely the rational numbers Q, the

real numbers R, and the complex numbers C, are fields. Again, these properties
are assumed to be familiar to you.

3. The quaternions
There do exist division rings in which the multiplication is not commutative,

that is, which are not fields, but they are not so easy to find. The simplest example
is the ring of quaternions, discovered by Hamilton in 1843.

On 16 October 1843 (a Monday) Hamilton
was walking in along the Royal Canal with
his wife to preside at a Council meeting of
the Royal Irish Academy. Although his wife
talked to him now and again Hamilton
hardly heard, for the discovery of the
quaternions, the first noncommutative [ring]
to be studied, was taking shape in his mind.
He could not resist the impulse to carve the
formulae for the quaternions in the stone of
Broome Bridge (or Brougham Bridge as he
called it) as he and his wife passed it.

Instead of adding just one element i to the real numbers, Hamilton added three.
That is, a quaternion is an object of the form a+bi+ cj+dk, where

i2 = j2 = k2 =−1, ij =−ji = k, jk =−kj = i, ki =−ik = j.

It can be shown that all the axioms (A0)–(A4), (M0)–(M3) and (D) are satisfied.
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For example, if a,b,c,d are not all zero, then we have

(a+bi+ cj+dk)
(

a−bi− cj−dk
a2 +b2 + c2 +d2

)
= 1.

The ring of quaternions is denoted by H, to commemorate Hamilton.

4. Matrix rings
We briefly defined addition and multiplication for matrices in the last chapter.

The formulae for addition and multiplication of n×n matrices, namely

(A+B)i j = Ai j +Bi j, (AB)i j =
n

∑
k=1

AikBk j,

just depend on the fact that we can add and multiply the entries. In principle
these can be extended to any system in which addition and multiplication are
possible. However, there is a problem with multiplication, because of the ∑

n
k=1,

which tells us to add up n terms. In general we can only add two things at a time,
since addition is a binary operation, so we have to make the convention that, for
example, a+b+ c means (a+b)+ c, a+b+ c+d means (a+b+ c)+d, and so
on. We will return to this point in the next subsection.

Now we have the following result:

Proposition 2.1 Let R be a ring. Then the set Mn(R) of n× n matrices over R,
with addition and multiplication defined in the usual way, is a ring. If R has an
identity, then Mn(R) has an identity; but it is not in general a commutative ring or
a division ring.

We will look at the proof later, once we have considered addition of n terms.

5. Polynomial rings
In much the same way, the usual rules for addition of polynomials,(

∑aixi)+ (∑bixi)= ∑(ai +bi)xi,
(
∑aixi)(

∑bixi)= ∑dixi,

where

di =
i

∑
k=0

akbi−k,

can be extended to polynomials with coefficients in any algebraic structure in
which addition and multiplication are defined. As for matrices, we have to be able
to add an arbitrary number of terms to make sense of the definition of multiplica-
tion. We have the result:
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Proposition 2.2 Let R be a ring, then the set R[x] of polynomials over R, with
addition and multiplication defined in the usual way, is a ring. If R is commutative,
then so is R[x]; if R has an identity, then so does R[x]; but it is not a division ring.

Again we defer looking at the proof.

6. Rings of sets

The idea of forming a ring from operations
on sets is due to George Boole, who
published in 1854 An investigation into the
Laws of Thought, on Which are founded the
Mathematical Theories of Logic and
Probabilities. Boole approached logic in a
new way reducing it to algebra, in much the
same way as Descartes had reduced
geometry to algebra.

The familiar set operations of union and intersection satisfy some but not all
of the ring axioms. They are both commutative and associative, and satisfy the
distributive laws both ways round; but they do not satisfy the identity and inverse
laws for addition.

Boole’s algebra of sets works as follows. Let P(A), the power set of A, be
the set of all subsets of the set A. Now we define addition and multiplication on
P(A) to be the operations of symmetric difference and intersection respectively:

x+ y = x4y, xy = x∩ y.

Proposition 2.3 The set P(A), with the above operations, is a ring; it is commu-
tative, has an identity element, but is not a field if |A| > 1. It satisfies the further
conditions x+ x = 0 and xx = x for all x.

We won’t give a complete proof, but note that the empty set is the zero element
(since x4 /0 = x for any set x), while the additive inverse −x of x is equal to x
itself (since x4x = /0 for any x). Check the other axioms for yourself with Venn
diagrams.

A ring satisfying the further condition that xx = x for all x is called a Boolean
ring.
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7. Zero rings
Suppose that we have any set R with a binary operation + satisfying the ad-

ditive axioms (A0)–(A4). (We will see later in the course that such a structure is
called an abelian group.) Then we can make R into a ring by defining xy = 0 for
all x,y ∈ R. This is not a very exciting rule for multiplication, but it is easy to
check that all remaining axioms are satisfied.

A ring in which all products are zero is called a zero ring. It is commutative,
but doesn’t have an identity (if |R|> 1).

8. Direct sum
Let R and S be any two rings. Then we define the direct sum R⊕S as follows.

As a set, R⊕S is just the cartesian product R×S. The operations are given by the
rules

(r1,s1)+(r2,s2) = (r1 + r2,s1 + s2), (r1,s1)(r2,s2) = (r1r2,s1s2).

(Note that in the ordered pair (r1 + r2,s1 + s2), the first + denotes addition in R,
and the second + is addition in S.)

Proposition 2.4 If R and S are rings, then R⊕S is a ring. If R and S are commu-
tative, then so is R⊕S; if R and S have identities, then so does R⊕S; but R⊕S is
not a division ring if both R and S have more than one element.

The proof is straightforward checking.

9. Modular arithmetic
Let Zn denote the set of all congruence classes modulo n, where n is a positive

integer. We saw in the first chapter that there are n congruence classes; so Zn is a
set with n elements:

Zn = {[0]n, [1]n, . . . , [n−1]n}.

Define addition and multiplication on Zn by the rules

[a]n +[b]n = [a+b]n, [a]n[b]n = [ab]n.

There is an important job to do here: we have to show that these definitions
don’t depend on our choice of representatives of the equivalence classes.

Proposition 2.5 For any positive integer n, Zn is a commutative ring with identity.
It is a field if and only if n is a prime number.
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Here, for example, are the addition and multiplication tables of the ring Z5.
We simplify the notation by writing x instead of [x]5.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note, for example, that 2−1 = 3 in this ring.

10. Rings of functions
The sum and product of continuous real functions are continuous. So there is

a ring C(R) of coninuous functions from R to R, with

( f +g)(x) = f (x)+g(x), ( f g)(x) = f (x)g(x).

There are several related rings, such as C1(R) (the ring of differentiable functions),
C0(R) (the ring of continuous functions satisfying f (x) → 0 as x → ±∞), and
C([a,b]) (the ring of continuous functions on the interval [a,b]. All these rings are
commutative, and all except C0(R) have an identity (the constant function with
value 1).

These rings are the subject-matter of Functional Analysis.

2.1.3 Properties of rings
We have some business deferred from earlier to deal with. After that, we prove
some basic properties of rings, starting from the axioms.

Uniqueness of zero element
The zero element of a ring is unique. For suppose that there are two zero

elements, say z1 and z2. (This means that a + z1 = z1 + a = a for all a and also
a+ z2 = z2 +a = a for all a.) Then

z1 = z1 + z2 = z2.

Exercise: Show that the identity element of a ring, if it exists, is unique.
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Uniqueness of additive inverse
The additive inverse of an element a is unique. For suppose that b and c are

both additive inverses of a. (This means that a+b = b+a = 0 and a+c = c+a = 0
– we know now that there is a unique zero element, and we call it 0.) Then

b = b+0 = b+(a+ c) = (b+a)+ c = 0+ c = c,

where we use the associative law in the third step.

Exercise: Show that the multiplicative inverse of an element of a ring, if it
exists, is unique.

Adding more than two elements
The associative law tells us that if we have to add three elements, then the two

possible ways of doing it, namely (a + b)+ c and a +(b + c), give us the same
result. For more than three elements, there are many different ways of adding
them: we have to put in brackets so that the sum can be worked out by adding two
elements at a time. For example, there are five ways of adding four elements:

((a+b)+c)+d, (a+(b+c))+d, (a+b)+(c+d), a+((b+c)+d), a+(b+(c+d)).

These are all equal. For the associative law (a +b)+ c) = a +(b + c) shows that
the first and second are equal, while the associative law for b,c,d shows that the
fourth and fifth are equal. Also, putting x = a+b, we have

((a+b)+ c)+d = (x+ c)+d = x+(c+d) = (a+b)+(c+d),

so the first and third are equal; and similarly the third and fifth are equal.
In general we have the following. The proof works for any associative binary

operation.

Proposition 2.6 Let ∗ be an associative binary operation on a set A, and a1, . . . ,an ∈
A. Then the result of evaluating a1 ∗a2 ∗ · · · ∗an, by adding brackets in any way to
make the expression well-defined, is the same, independent of bracketing.

Proof The proof is by induction on the number of terms. For n = 2 there is
nothing to prove; for n = 3, the statement is just the associative law; and for n = 4,
we showed it above. Suppose that the result is true for fewer than n terms. Suppose
now that we have two different bracketings of the expression a1 ∗ a2 ∗ · · · ∗ an.
The first will have the form (a1 ∗ · · · ∗ ai) ∗ (ai+1 ∗ · · · ∗ an), with the terms inside
the two sets of brackets themselves bracketed in some way. By induction, the
result is independent of the bracketing of a1, . . . ,ai and of ai+1, . . . ,an. Similarly,
the second expression will have the form (a1 ∗ · · · ∗ a j) ∗ (a j+1 ∗ · · · ∗ an), and is
independent of the bracketing of a1, . . . ,a j and of a j+1, . . . ,an.
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Case 1 : i = j. Then the two expressions are obviously equal.

Case 2 : i 6= j; suppose, without loss, that i < j. Then the first expression
can be written as

(a1 ∗ · · · ∗ai)∗ ((ai+1 ∗ · · · ∗a j)∗ (a j+1 ∗ · · · ∗an)),

and the second as

((a1 ∗ · · · ∗ai)∗ (ai+1 ∗ · · · ∗a j))∗ (a j+1 ∗ · · · ∗an),

where each expression is independent of any further bracketing. By the associative
law, these two expressions are equal: they are x ∗ (y ∗ z) and (x ∗ y) ∗ z, where
x = a1 ∗ · · · ∗ai, y = ai+1 ∗ · · · ∗a j, and z = a j+1 ∗ · · · ∗an.

Note that this result applies to both addition and multiplication in a ring.

As usual, we denote a1 +a2 + · · ·+an by
n

∑
i=1

ai.

Cancellation laws

Proposition 2.7 In a ring R, if a+x = b+x, then a = b. Similarly, if x+a = x+b,
then a = b.

Proof Suppose that a+ x = b+ x, and let y =−x. Then

a = a+0 = a+(x+ y) = (a+ x)+ y = (b+ x)+ y = b+(x+ y) = b+0 = b.

The other law is proved similarly, or by using the commutativity of addition.

These facts are the cancellation laws.

A property of zero
One familiar property of the integers is that 0a = 0 for any integer a. We don’t

have to include this as an axiom, since it follows from the other axioms. Here
is the proof. We have 0 + 0 = 0, so 0a + 0 = 0a = (0 + 0)a = 0a + 0a, by the
distributive law; so the cancellation law gives 0 = 0a. Similarly a0 = 0.

It follows that if R has an identity 1, and |R| > 1, then 1 6= 0. For choose any
element a 6= 0; then 1a = a and 0a = 0. It also explains why we have to exclude 0
in condition (M3): 0 cannot have a multiplicative inverse.
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Commutativity of addition
It turns out that, in a ring with identity, it is not necessary to assume that

addition is commutative: axiom (A4) follows from the other ring axioms together
with (M2).

For suppose that (A0)–(A3), (M0)–(M2) and (D) all hold. We have to show
that a+b = b+a. Consider the expression (1+1)(a+b). We can expand this in
two different ways by the two distributive laws:

(1+1)(a+b) = 1(a+b)+1(a+b) = a+b+a+b,

(1+1)(a+b) = (1+1)a+(1+1)b = a+a+b+b.

Hence a + b + a + b = a + a + b + b, and using the two cancellation laws we
conclude that b+a = a+b.

This argument depends on the existence of a multiplicative identity. If we take
a structure with an operation + satisfying (A0)–(A3) (we’ll see later that such a
structure is known as a group), and apply the “zero ring” construction to it (that
is, ab = 0 for all a,b), we obtain a structure satisfying all the ring axioms except
(A4).

Boolean rings
We saw that a Boolean ring is a ring R in which xx = x for all x ∈ R.

Proposition 2.8 A Boolean ring is commutative and satisfies x + x = 0 for all
x ∈ R.

Proof We have (x + y)(x + y) = x + y. Expanding the left using the distributive
laws, we find that

xx+ xy+ yx+ yy = x+ y.

Now xx = x and yy = y. So we can apply the cancellation laws to get

xy+ yx = 0.

In particular, putting y = x in this equation, we have xx+xx = 0, or x+x = 0, one
of the things we had to prove.

Taking this equation and putting xy in place of x, we have

xy+ xy = 0 = xy+ yx,

and then the cancellation law gives us xy = yx, as required.

We saw that the power set of any set, with the operations of symmetric dif-
ference and intersection, is a Boolean ring. Another example is the ring Z2 (the
integers mod 2).



2.1. INTRODUCTION 23

2.1.4 Matrix rings
In view of Proposition 2.6, the definition of the product of two n×n matrices now
makes sense: AB = D, where

Di j =
n

∑
k=1

AikBk j.

So we are in the position to prove Proposition 2.1.
A complete proof of this proposition involves verifying all the ring axioms.

The arguments are somewhat repetitive; I will give proofs of two of the axioms.
Axiom (A2): Let 0 be the zero element of the ring R, and let O be the zero

matrix in Mn(R), satisfying Oi j = 0 for all i, j. Then O is the zero element of
Mn(R): for, given any matrix A,

(O+A)i j = Oi j +Ai j = 0+Ai j = Ai j, (A+O)i j = Ai j +Oi j = Ai j +0 = Ai j,

using the properties of 0 ∈ R. So O+A = A+O = A.
Axiom (D): the (i, j) entry of A(B+C) is

n

∑
k=1

Aik(B+C)k j =
n

∑
k=1

AikBk j +AikCk j,

by the distributive law in R; and the (i, j) entry of AB+AC is

n

∑
k=1

AikBk j +
n

∑
k=1

AikCk j.

Why are these two expressions the same? Let us consider the case n = 2. The first
expression is

Ai1B1 j +Ai1C1 j +Ai2B2 j +Ai2C2 j,

while the second is

Ai1B1 j +Ai2B2 j +Ai1C1 j +Ai2C2 j.

(By Proposition 2.6, the bracketing is not significant.) Now the commutative law
for addition allows us to swap the second and third terms of the sum; so the two
expressions are equal. Hence A(B +C) = AB + AC for any matrices A,B,C. For
n > 2, things are similar, but the rearrangement required is a bit more complicated.

The proof of the other distributive law is similar.
Observe what happens in this proof: we use properties of the ring R to deduce

properties of Mn(R). To prove the distributive law for Mn(R), we needed the dis-
tributive law and the associative and commutative laws for addition in R. Similar
things happen for the other axioms.
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2.1.5 Polynomial rings
What exactly is a polynomial? We deferred this question before, but now is the
time to face it.

A polynomial ∑aixi is completely determined by the sequence of its coeffi-
cients a0,a1, . . .. These have the property that only a finite number of terms in the
sequence are non-zero, but we cannot say in advance how many. So we make the
following definition:

A polynomial over a ring R is an infinite sequence

(ai)i≥0 = (a0,a1, . . .)

of elements of R, having the property that only finitely many terms are non-zero;
that is, there exists an n such that ai = 0 for all i > n. If an is the last non-zero
term, we say that the degree of the polynomial is n. (Note that, according to this
definition, the all-zero sequence does not have a degree.)

Now the rules for addition and multiplication are

(ai)+(bi) = (ci) where ci = ai +bi,

(ai)(bi) = (di) where di =
i

∑
j=0

a jbi− j.

Again, the sum in the definition of multiplication is justified by Proposition 2.6.
We think of the polynomial (ai)i≥0 of degree n as what we usually write as
∑

n
i=0 aixi; the rules we gave agree with the usual ones.

Now we can prove Proposition 2.2, asserting that the set of polynomials over a
ring R is a ring. As for matrices, we have to check all the axioms, which involves
a certain amount of tedium. The zero polynomial required by (A2) is the all-zero
sequence. Here is a proof of (M1). You will see that it involves careful work with
dummy subscripts!

We have to prove the associative law for multiplication. So suppose that f =
(ai), g = (bi) and h = (ci). Then the ith term of f g is ∑

i
j=0 a jbi− j, and so the ith

term of ( f g)h is
i

∑
k=0

(
k

∑
j=0

a jbk− j

)
ci−k.

Similarly the ith term of f (gh) is

i

∑
s=0

as

(
i−s

∑
t=0

btci−s−t

)
.

Each term on both sides has the form apbqcr, where p,q,r ≥ 0 and p+q+ r = i.
(In the first expression, p = j, q = k− j, r = i− k; in the second, p = s, q = t,
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r = i− s− t.) So the two expressions contain the same terms in a different order.
By the associative and commutative laws for addition, they are equal.

2.2 Subrings

2.2.1 Definition and test
Suppose that we are given a set S with operations of addition and multiplication,
and we are asked to prove that it is a ring. In general, we have to check all the
axioms. But there is a situation in which things are much simpler: this is when
S is a subset of a set R which we already know to be a ring, and the addition and
multiplication in S are just the restrictions of the operations in R (that is, to add
two elements of S, we regard them as elements of R and use the addition in R).

Definition Let R be a ring. A subring of R is a subset S of R which is a ring in
its own right with respect to the restrictions of the operations in R.

What do we have to do to show that S is a subring?

• The associative law (A1) holds in S. For, if a,b,c ∈ S, then we have a,b,c ∈
R (since S ⊆ R), and so

(a+b)+ c = a+(b+ c)

since R satisfies (A1) (as we are given that it is a ring).

• Exactly the same argument shows that the commutative law for addition
(A4), the associative law for multiplication (M1), and the distributive laws
(D), all hold in S.

• This leaves only (A0), (A2), (A3) and (M0) to check.

Even here we can make a simplification, if S 6= /0. For suppose that (A0) and
(A3) hold in S. Given a ∈ S, the additive inverse −a belongs to S (since we are
assuming (A3)), and so 0 = a+(−a) belongs to S (since we are assuming (A0)).
Thus (A2) follows from (A0) and (A3).

We state this as a theorem:

Theorem 2.9 (First Subring Test) Let R be a ring, and let S be a non-empty sub-
set of R. Then S is a subring of R if the following condition holds:

for all a,b ∈ S, we have a+b,ab,−a ∈ S.
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Example We show that the set S of even integers is a ring. Clearly it is a non-
empty subset of the ring Z of integers. Now, if a,b ∈ S, say a = 2c and b = 2d,
we have

a+b = 2(c+d) ∈ S, ab = 2(2cd) ∈ S, −a = 2(−c) ∈ S,

and so S is a subring of Z, and hence is a ring.
The theorem gives us three things to check. But we can reduce the number

from three to two. We use a−b as shorthand for a +(−b). In the next proof we
need to know that −(−b) = b. This holds for the following reason. We have, by
(A3),

b+(−b) = (−b)+b = 0,

so that b is an additive inverse of −b. Also, of course, −(−b) is an additive
inverse of −b. By the uniqueness of additive inverse, −(−b) = b, as required. In
particular, a− (−b) = a+(−(−b)) = a+b.

Theorem 2.10 (Second Subring Test) Let R be a ring, and let S be a non-empty
subset of R. Then S is a subring of R if the following condition holds:

for all a,b ∈ S, we have a−b,ab ∈ S.

Proof Let S satisfy this condition: that is, S is closed under subtraction and mul-
tiplication. We have to verify that it satisfies the conditions of the First Subring
Test. Choose any element a ∈ S (this is possible since S is non-empty). Then
the hypothesis of the theorem shows that 0 = a−a ∈ S. Applying the hypothesis
again shows that −a = 0− a ∈ S. Finally, if a,b ∈ S, then −b ∈ S (by what has
just been proved), and so a+b = a− (−b) ∈ S. So we are done.

2.2.2 Cosets
Suppose that S is a subring of R. We now define a partition of R, one of whose
parts is S. Remember that, by the Equivalence Relation Theorem, in order to
specify a partition of R, we must give an equivalence relation on R.

Let ≡S be the relation on R defined by the rule

a≡S b if and only if b−a ∈ S.

We claim that ≡S is an equivalence relation.

Reflexive: for any a ∈ R, a−a = 0 ∈ S, so a≡S a.

Symmetric: take a,b∈ R with a≡S b, so that b−a∈ S. Then a−b =−(b−a)∈
S, so b≡S a.
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Transitive: take a,b,c ∈ R with a ≡S b and b ≡S c. Then b− a,c− b ∈ S. So
c−a = (c−b)+(b−a) ∈ S, so a≡S c.

So ≡S is an equivalence relation. Its equivalence classes are called the cosets
of S in R.

Example Let n be a positive intger. Let R = Z and S = nZ, the set of all mul-
tiples of n. Then S is a subring of R. (By the Second Subring Test, if a,b ∈ S,
say a = nc and b = nd, then a− b = n(c− d) ∈ S and ab = n(ncd) ∈ S.) In this
case, the relation ≡S is just congruence mod n, since a≡S b if and only if b−a is
a multiple of n. The cosets of S are thus precisely the congruence classes mod n.

An element of a coset is called a coset representative. As we saw in the first
chapter, it is a general property of equivalence relations that any element can be
used as the coset representative: if b is in the same equivalence class as a, then a
and b define the same equivalence classes. We now give a description of cosets.

If S is a subset of R, and a ∈ R, we define S +a to be the set

S +a = {s+a : s ∈ S}

consisting of all elements that we can get by adding a to an element of S.

Proposition 2.11 Let S be a subring of R, and a∈ R. Then the coset of R contain-
ing a is S +a.

Proof Let [a] denote the coset containing a, that is,

[a] = {b ∈ R : a≡S b}= {b ∈ R : b−a ∈ S}.

We have to show that [a] = S +a.
First take b ∈ [a], so that b−a ∈ S. Let s = b−a. Then b = s+a ∈ S +a.
In the other direction, take b ∈ S + a, so that b = s + a for some s ∈ S. Then

b−a = (s+a)−a = s ∈ S, so b≡S a, that is, b ∈ [a].
So [a] = S +a, as required.

Any element of a coset can be used as its representative. That is, if b ∈ S +a,
then S +a = S +b.

Here is a picture.
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R

•0

S
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•b

S +a
=

S +b

Note that S + 0 = S, so the subring S is a coset of itself, namely the coset
containing 0.

In particular, the congruence class [a]n in Z is the coset nZ+ a, consisting of
all elements obtained by adding a multiple of n to a. So the ring Z is partitioned
into n cosets of nZ.

2.3 Homomorphisms and quotient rings

2.3.1 Isomorphism
Here are the addition and multiplication tables of a ring with two elements, which
for now I will call o and i.

+ o i
o o i
i i o

· o i
o o o
i o i

You may recognise this ring in various guises: it is the Boolean ring P(X), where
X = {x} is a set with just one element x; we have o = /0 and i = {x}. Alternatively
it is the ring of integers mod 2, with o = [0]2 and i = [1]2.

The fact that these two rings have the same addition and multiplication tables
shows that, from an algebraic point of view, we cannot distinguish between them.

We formalise this as follows. Let R1 and R2 be rings. Let θ : R1 → R2 be
a function which is one-to-one and onto, that is, a bijection between R1 and R2.
Now we denote the result of applying the function θ to an element r ∈ R1 by rθ or
(r)θ rather than by θ(r); that is, we write the function on the right of its argument.

Now we say that θ is an isomorphism from R1 to R2 if it is a bijection which
satisfies

(r1 + r2)θ = r1θ + r2θ , (r1r2)θ = (r1θ)(r2θ). (2.1)

This means that we “match up” elements in R1 with elements in R2 so that addi-
tion and multiplication work in the same way in both rings.
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Example To return to our earlier example, let R1 = P({x}) and let R2 be the
ring of integers mod 2, and define a function θ : R1 → R2 by

/0θ = [0]2, {x}θ = [1]2.

Then θ is an isomorphism.

We say that the rings R1 and R2 are “isomorphic” if there is an isomorphism
from R1 to R2. The word “isomorphic” means, roughly speaking, “the same
shape”: if two rings are isomorphic then they can be regarded as identical from
the point of view of Ring Theory, even if their actual elements are quite different
(as in our example). We could say that Ring Theory is the study of properties of
rings which are the same in isomorphic rings.

So, for example, if R1 and R2 are isomorphic then:

• If R1 is commutative, then so is R2, and vice versa; and the same holds for
the property of being a ring with identity, a division ring, a Boolean ring, a
zero ring, etc.

• However, the property of being a ring of matrices, or a ring of polynomials,
etc., are not necessarily shared by isomorphic rings.

We use the notation R1 ∼= R2 to mean “R1 is isomorphic to R2”. Remember
that isomorphism is a relation between two rings. If you are given two rings R1
and R2 and asked whether they are isomorphic, do not say “R1 is isomorphic but
R2 is not”.

2.3.2 Homomorphisms
An isomorphism is a function between rings with two properties: it is a bijection
(one-to-one and onto), and it preserves addition and multiplication (as expressed
by equation (2.1)). A function which preserves addition and multiplication but
is not necessarily a bijection is called a homomorphism. Thus, a homomorphism
from R1 to R2 is a function θ : R1 → R2 satisfying

(r1 + r2)θ = r1θ + r2θ , (r1r2)θ = (r1θ)(r2θ).

You should get used to these two long words, and two others. A function θ : R1 →
R2 is

• a homomorphism if it satisfies (2.1); (homo=similar)

• a monomorphism if it satisfies (2.1) and is one-to-one; (mono=one)

• an epimorphism if it satisfies (2.1) and is onto; (epi=onto)
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• an isomorphism if it satisfies (2.1) and is one-to-one and onto (iso=equal)

For example, the function from the ring Z to the ring of integers mod 2, which
takes the integer n to its congruence class [n]2 mod 2, is a homomorphism. Basi-
cally this says that, if we only care about the parity of an integer, its congruence
mod 2, then the addition and multiplication tables are

+ even odd
even even odd
odd odd even

· even odd
even even even
odd even odd

and this ring is the same as the one at the start of this section.

Let θ : R1 → R2 be a homomorphism. The image of θ is, as usual, the set

Im(θ) = {s ∈ R2 : s = rθ for some r ∈ R1}.

We define the kernel of θ to be the set

Ker(θ) = {r ∈ R1 : rθ = 0},

the set of elements of R1 which are mapped to the zero element of R2 by θ . You
will have seen a definition very similar to this in Linear Algebra.

The image and kernel of a homomorphism have an extra property. This is not
the final version of this theorem: we will strengthen it in two ways in the next two
sections. First, a lemma:

Lemma 2.12 Let θ : R1 → R2 be a homomorphism. Then

(a) 0θ = 0;

(b) (−a)θ =−(aθ) for all a ∈ R1;

(c) (a−b)θ = aθ −bθ for all a,b ∈ R1.

Proof We have
0+0θ = 0θ = (0+0)θ = 0θ +0θ ,

and the cancellation law gives 0θ = 0.
Then

aθ +(−a)θ = (a−a)θ = 0θ = 0,

so (−a)θ is the additive inverse of aθ , that is, (−1)θ =−(aθ).
Finally, (a−b)θ = aθ +(−b)θ = aθ −bθ .

Proposition 2.13 Let θ : R1 → R2 be a homomorphism. Then
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(a) Im(θ) is a subring of R2;

(b) Ker(θ) is a subring of R1.

Proof We use the Second Subring Test.
(a) First notice that Im(θ) 6= /0, since Im(θ) contains 0, by the Lemma.
Take a,b ∈ Im(θ), say, a = xθ and b = yθ . Then −b = (−y)θ , so

a−b = xθ +(−y)θ = (x− y)θ ∈ Im(θ).

Also ab = (xθ)(yθ) = (xy)θ ∈ Im(θ). So Im(θ) is a subring of R2.
(b) First notice that Ker(θ) 6= /0, since Ker(θ) contains 0, by the Lemma.
Take a,b ∈ Ker(θ), so that aθ = bθ = 0. Then

(a−b)θ = aθ −bθ = 0−0 = 0,

(ab)θ = (aθ)(bθ) = 0 ·0 = 0,

so Ker(θ) is a subring.

2.3.3 Ideals
An ideal in a ring is a special kind of subring.

Let S be a subring of R. We say that S is an ideal if, for any a ∈ S and r ∈ R,
we have ar ∈ S and ra ∈ S.

For example, let R = Z and S = nZ for some positive integer n. We know that
S is a subring of R. Choose a ∈ S, say a = nc for some c ∈ Z. Then ar = ra =
n(cr) ∈ S. So S is an ideal.

Any ring R has two trivial ideals: the whole ring R is an ideal; and the set {0}
consisting only of the zero element is an ideal.

There is an ideal test similar to the subring tests. We give just one form.

Theorem 2.14 (Ideal Test) Let R be a ring, and S a non-empty subset of R. Then
S is an ideal if the following conditions hold:

(a) for all a,b ∈ S, we have a−b ∈ S;

(b) for all a ∈ S and r ∈ R, we have ar,ra ∈ S.

Proof Take a,b ∈ S. Then ab ∈ S (this is a special case of (b), with r = b). So by
the Second Subring Test, S is a subring. Then by (b), it is an ideal.
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Now we can strengthen the statement that the kernel of a homomorphism is a
subring.

Proposition 2.15 Let θ : R1 → R2 be a homomorphism. Then Ker(θ) is an ideal
in R1.

Proof We already know that it is a subring, so we only have to check the last part
of the definition. So take a ∈ Ker(θ) (so that aθ = 0), and r ∈ R1. Then

(ar)θ = (aθ)(rθ) = 0(rθ) = 0,

and similarly (ra)θ = 0. So ar,ra ∈ Ker(θ).

We will see in the next section that it goes the other way too: every ideal is
the kernel of a homomorphism. So “ideals” are the same thing as ”kernels of
homomorphisms”.

2.3.4 Quotient rings
Let I be an ideal of a ring R. We will define a ring, which we call the quotient ring
or factor ring, of R by I, and denote by R/I.

The elements of R/I are the cosets of I in R. Thus each element of R/I is a set
of elements (an equivalence class) of R. Remember that each coset can be written
as I + a for some a ∈ R. Now we have to define addition and multiplication. We
do this by the rules

(I +a)+(I +b) = I +(a+b),
(I +a)(I +b) = I +ab.

There is one important job that we have to do to prove that this is a good
definition. Remember that any element of a coset can be used as a representative.
So you might use the representatives a and b, while I use the representatives a′

and b′ for the same cosets. We need to show that the definitions don’t depend on
these choices; that is, we have to show that

I+a = I+a′ and I+b = I+b′ imply I+(a+b)= I+(a′+b′) and I+ab = I+a′b′.

So suppose that I +a = I +a′ and I +b = I +b′. Then a′ ∈ I +a, so a′ = s+a
for some s ∈ I. Similarly, b′ = t +b for some t ∈ I. Now

a′+b′ = (s+a)+(t +b) = (s+ t)+(a+b) ∈ I +(a+b),
a′b′ = (s+a)(t +b) = st + sb+ ta+ab ∈ I +ab,
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by using the associative and commutative laws for addition and the distributive
laws. So the result is proved, once we justify the last step by showing that s+ t ∈ I
and st + sb + at ∈ I. Remember that s, t ∈ I, so that s + t ∈ I (as I is a subring);
also st ∈ I (since I is a subring) and sb ∈ I and at ∈ I (since I is an ideal), so the
sum of these three expressions is in I.

Proposition 2.16 If I is an ideal of the ring R, then the set R/I, with operations of
addition and multiplication defined as above, is a ring, and the map θ : R → R/I
defined by rθ = I + r is a homomorphism whose kernel is I.

Proof We have well-defined operations of addition and multiplication, so (A0)
and (M0) hold. The proofs of the other axioms are all very similar. Here is a proof
of the first distributive law. Take three elements of R/I (that is, three cosets!), say
I +a, I +b, I + c. Then

((I +a)+(I +b))(I + c) = (I +(a+b))(I + c)
= I +(a+b)c
= I +(ac+bc)
= (I +ac)+(I +bc)
= (I +a)(I + c)+(I +b)(I + c).

Here we use the distributive law in R to get from the second line to the third, while
the other steps just use the definitions of addition and multiplication in R/I.

Next we show that θ is a homomorphism. This is true by definition:

(a+b)θ = (I +a)+(I +b) = I +(a+b) = (a+b)θ ,

(ab)θ = (I +a)(I +b) = I +(ab) = (ab)θ .

Finally we calculate Ker(θ). There is one important thing to note. The zero
element of R/I is the coset I +0. This is just the ideal I itself! So

Ker(θ) = {a ∈ R : aθ = 0}= {a ∈ R : I +a = I}= I,

since I +a = I means that a is a representative for the coset I, that is, a ∈ I.

The map θ in this result is called the natural homomorphism from R to R/I.
We see that, if I is any ideal of R, then I is the kernel of the natural homomorphism
from R to R/I.
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2.3.5 The Isomorphism Theorems
The Isomorphism Theorems are a number of results which look more closely at
a homomorphism. The first one makes more precise the results we saw earlier
about the image and kernel of a homomorphism.

Theorem 2.17 (First Isomorphism Theorem) Let R1 and R2 be rings, and let
θ : R1 → R2 be a homomorphism. Then

(a) Im(θ) is a subring of R2;

(b) Ker(θ) is an ideal of R1;

(c) R1/Ker(θ)∼= Im(θ).

Proof We already proved the first two parts of this theorem, in Propositions
2.13 and 2.15. We have to prove (c). Remember that this means that the rings
R1/Ker(θ) (the quotient ring, which is defined because Ker(θ) is an ideal in R1)
and Im(θ) (a subring of R2) are isomorphic. We have to construct a map φ be-
tween these two rings which is one-to-one and onto, and is a homomorphism.

Put I = Ker(θ), and define φ by the rule

(I + r)φ = rθ

for r ∈ R1. On the face of it, this might depend on the choice of the coset rep-
resentative r. So first we have to prove that, if I + r = I + r′, then rθ = r′θ . We
have

I + r = I + r′ ⇒ r′ = s+ r for some s ∈ I = Ker(θ)
⇒ r′θ = sθ + rθ = 0+ rθ = rθ ,

as required. So indeed φ is well defined.
In fact this argument also reverses. If rθ = r′θ , then (r′− r)θ = r′θ − rθ = 0,

so r′− r ∈Ker(θ). This means, by definition, that r and r′ lie in the same coset of
Ker(θ) = I, so that I + r = I + r′. This shows that φ is one-to-one.

To show that φ is onto, take s ∈ Im(θ). Then s = rθ for some r ∈ R, and we
have s = rθ = (I + r)φ . So Im(φ) = Im(θ) as required.

Finally,

((I + r1)+(I + r2))φ = (r1 + r2)θ = (r1θ)+(r2θ) = (I + r1)φ +(I + r2)φ ,

((I + r1)(I + r2))φ = (r1r2)θ = (r1θ)(r2θ) = (I + r1)φ(I + r2)φ ,

so φ is a homomorphism, and hence an isomorphism, as required.
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Figure 2.1: A homomorphism

We illustrate this theorem with a picture.
In the picture, the parts into which R1 is divided are the cosets of the ideal

ker(θ) (the set Ker(θ) itself has been taken to be the top part of the partition).
The oval region inside R2 is the subring Im(θ). Each coset of Ker(θ) maps to a
single element of Im(θ).

The second Isomorphism Theorem is sometimes called the “Correspondence
Theorem”, since it says that subrings of R/I correspond in a one-to-one manner
with subrings of R containing I.

Theorem 2.18 (Second Isomorphism Theorem) Let I be an ideal of the ring R.
Then there is a one-to-one correspondence between the subrings of R/I and the
subrings of R containing I, given as follows: to a subring S of R containing I
corresponds the subring S/I of R/I. Under this correspondence, ideals of R/I
correspond to ideals of R containing I; and, if J is an ideal of R containing I, then

(R/I)/(J/I)∼= R/J.

Proof If S is a subring of R containing I, then I is an ideal of S. (For applying
the ideal test inside S means we have to check that I is closed under subtraction
and under multiplication by elements of S; these are just some of the checks that
would be required to show that it is an ideal of R. Now if s ∈ S, then the entire
coset I + s lies in S, since S is closed under addition. So S/I is well-defined: it
consists of all the cosets of I which are contained in S. Clearly it is a subring of
R/I. Thus, we have a mapping from subrings of R containing I to subrings of R/I.

In the other direction, let T be a subring of R/I. This means that T is a set of
cosets of I which form a ring. Let S be the union of all the cosets in T . We will
show that S is a subring of R. It obviously contains I (since I is the zero coset) and
S/I = T follows.
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Take a,b ∈ S. Then I + a, I + b ∈ T . Since T is a subring, we have (I + a)−
(I +b) = I +(a−b) ∈ T and (I +a)(I +b) = I +ab ∈ T , so a−b ∈ S and ab ∈ S.
By the Second Subring Test, S is a subring.

Next we show that ideals correspond to ideals. Let J be an ideal of R con-
taining I. Then J/I is a subring of R/I, and we have to show that it is an ideal.
Take I + a ∈ J/I and I + r ∈ R/I. Then a ∈ J and r ∈ R, so ar,ra ∈ J, whence
(I + a)(I + r),(I + r)(I + a) ∈ J/I. Thus J/I is an ideal of R/I. The converse is
similar.

I will not give the proof that (R/I)/(J/I) ∼= R/J: this will not be used in the
course.

The Third Isomorphism Theorem needs a little more notation. Let A and B be
two subsets of a ring R. Then we define A+B to consist of all sums of an element
of A and an element of B:

A+B = {a+b : a ∈ A,b ∈ B}.

Theorem 2.19 (Third Isomorphism Theorem) Let R be a ring, S a subring of
R, and I an ideal of R. Then

(a) S + I is a subring of R containing I;

(b) S∩ I is an ideal of S;

(c) S/(S∩ I)∼= (S + I)/I.

Proof We could prove the three parts in order, but it is actually easier to start
at the end! Remember the natural homomorphism θ from R to R/I with kernel
θ . What happens when we restrict θ to S, that is, we only put elements of S into
the function θ? Let φ denote this restriction. Then φ maps S to R/I. We find its
image and kernel, and apply the First Isomorphism Theorem to them.

(a) The image of φ consists of all cosets I + s containing a coset representative
in S. The union of all these cosets is I + S, so the image of φ is (I + S)/I.
This is a subring of R/I (since it is the image of a homomorphism). By the
Correspondence Theorem, S + I is a subring of R containing I.

(b) The kernel of φ consists of all elements of S mapped to zero by φ , that is,
all elements s ∈ S such that s ∈ Ker(θ) = I. Thus, Ker(φ) = S∩ I, and so
S∩ I is an ideal of S.

(c) Now the first isomorphism theorem shows that

S/(I +S)∼= Im(φ) = (I +S)/I,

and we are done.
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2.4 Factorisation
One of the most important properties of the integers is that any number can be
factorised into prime factors in a unique way. But we have to be a bit careful. It
would be silly to try to factorise 0 or 1; and the factorisation is not quite unique,
since (−2) · (−3) = 2 ·3, for example. Once we have the definitions straight, we
will see that “unique factorisation” holds in a large class of rings.

2.4.1 Zero divisors and units
In this section, we will assume that our rings are always commutative.

Let R be a ring. We know that 0a = 0 holds for all a ∈ R. It is also possible
for the product of two non-zero elements of R to be zero. We say that a is a
zero-divisor if

• a 6= 0, and

• there exists b ∈ R, with b 6= 0, such that ab = 0.

In other words, if the product of two non-zero elements is zero, then we call each
of them a zero-divisor.

The ring Z has no zero-divisors, since if a and b are non-zero integers then
obviously ab 6= 0. Also, a field has no zero divisors. For suppose that R is a field,
and let a be a zero-divisor. Thus, a 6= 0, and there exists b 6= 0 such that ab = 0.
Since R is a field, a has a multiplicative inverse a−1 satisfying a−1a = 1. Then

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b,

contradicting our assumption that b 6= 0.
In the next example, we use the greatest common divisor function for integers:

d is a greatest common divisor of a and b if it divides both of them, and if any
other divisor of a and b also divides d. That is, 6 is a greatest common divisor
of 12 and 18; but −6 is also a greatest common divisor. We will live with this
slight awkwardness for a while, choosing gcd(a,b) to be the positive rather than
the negative value.

Example Let R = Z/nZ, the ring of integers mod n. Then the element a ∈ R is
a zero-divisor if and only if 1 < gcd(a,n) < n.

Proof Suppose that a is a zero-divisor in R. This means that a 6= 0 in R (that is,
a is not divisible by n, which shows that gcd(a,n) < n), and there exists b ∈ R
with b 6= 0 and ab = 0. So, regarding a,b,n as integers, we have n | ab but n
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doesn’t divide either a or b. We are trying to prove that gcd(a,n) > 1, so suppose
(for a contradiction) that the greatest common divisor is 1. Since n and a are
coprime, the fact that n divides ab means that n must divide b, which contradicts
our assumption that b 6= 0 in R.

Conversely, suppose that 1 < d = gcd(a,n) < n. Then a 6= 0 as an element of
R. Let a = dx and n = db. Then n divides nx = (db)x = (dx)b = ab, but clearly
n doesn’t divide y. So, in the ring R, we have ab = 0 and b 6= 0. Thus a is a
zero-divisor.

From now on we make another assumption about our rings: as well as being
commutative, they will always have an identity element. We make a definition:

An integral domain is a commutative ring with identity which has no zero-
divisors.

Example Z is an integral domain. (This example is the “prototype” of an inte-
gral domain, and gives us the name for this class of rings.) Any field is an integral
domain. The ring Z/nZ is an integral domain if and only if n is a prime number.

The last statement is true because a positive integer n has the property that
every smaller positive integer a satisfies gcd(a,n) = 1 if and only if n is prime.

Example If R is an integral domain, then so is the ring R[x] of polynomials over
R.

For suppose that f and g are non-zero polynomials, with degrees m and n
respectively: that is,

f (x) =
n

∑
i=0

aixi, g(x) =
m

∑
i=0

bixi,

where an 6= 0 and bm 6= 0. The coefficient of xm+n in f (x)g(x) is anbm 6= 0 (because
R is an integral domain). So f (x)g(x) 6= 0.

Let R be a ring with identity element 1; we assume that 1 6= 0, Let a ∈ R, with
a 6= 0. An inverse of a is an element b∈ R such that ab = ba = 1. We say that a us
a unit if it has an inverse. (We exclude zero because obviously 0 has no inverse:
0b = 0 for any element b.)

An element a has at most one inverse. For suppose that b and c are inverses of
a. Then

b = b1 = b(ac) = (ba)c = ac = c.

We write the inverse of the unit a as a−1. Furthermore, a zero-divisor cannot be a
unit. For, if ba = 1 and ac = 0, then

0 = b0 = b(ac) = (ba)c = 1c = c.
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Lemma 2.20 Let R be a ring with identity. Then

(a) 1 is a unit;

(b) if u is a unit then so is u−1;

(c) if u and v are units then so is uv.

Proof (a) 1 ·1 = 1.
(b) The equations uu−1 = u−1u = 1 show that the inverse of u−1 is u.
(c) Let u and v be units. We claim that the inverse of uv is v−1u−1. (Note the

reverse order!) For we have

(uv)(v−1u−1) = u(vv−1)u−1 = u1u−1 = uu−1 = 1,

(v−1u−1)(uv) = v−1(u−1u)v = v−11v = v−1v = 1.

To help you remember that you have to reverse the order when you find the
inverse of a product, this example may help. Suppose that u is the operation of
putting on your socks, and v the operation of putting on your shoes, so that uv
means “put on your socks and then your shoes”. What is the inverse of uv?

Example In the integral domain Z, the only units are +1 and −1. For if ab = 1,
then a = 1 or a =−1.

Example Consider the ring Z/nZ, where n > 1. We already saw that a is a
zero-divisor if and only if 1 < gcd(a,n) < n. We claim that a is a unit if and only
if gcd(a,n) = 1.

Suppose first that a is a unit, and that d = gcd(a,n). Then d | a and d | n. Let
b be the inverse of a, so that ab = 1 in R, which means that ab ≡ 1 (mod n), or
ab = xn+1. But then d divides ab and d divides xn, so d divides 1, whence d = 1.

To prove the converse, we use the Euclidean algorithm (more about this shortly),
which shows that, given any two integers a and n, there are integers x and y such
that xa + yn = d, where d = gcd(a,n). If d = 1, then this equation shows that
xa≡ 1 (mod n), so that xa = 1 in Z/nZ, so that a is a unit.

This shows that every non-zero element of Z/nZ is either a zero-divisor or a
unit.
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For example, for n = 12, we have:

1 unit 1 ·1 = 1
2 zero-divisor 2 ·6 = 0
3 zero-divisor 3 ·4 = 0
4 zero-divisor 4 ·3 = 0
5 unit 5 ·5 = 1
6 zero-divisor 6 ·2 = 0
7 unit 7 ·7 = 1
8 zero-divisor 8 ·3 = 0
9 zero-divisor 9 ·4 = 0
10 zero-divisor 10 ·6 = 0
11 unit 11 ·11 = 1

We call two elements a,b ∈ R associates if there is a unit u ∈ R such that
b = ua. Write a ∼ b to mean that a and b are associates. Thus, any unit is an
associate of 1, while 0 is associate only to itself.

Being associates is an equivalence relation: it is

• reflexive since a = a1 and 1 is a unit;

• symmetric since, if b = au, then a = bu−1, and u−1 is a unit;

• transitive since, if b = au and c = bv where u and v are units, then c = a(uv),
and uv is a unit.

Here we have invoked the three parts of the lemma above about units.
For example, in the ring Z/12Z, the associate classes are

{0}, {1,5,7,11}, {2,10}, {3,9} {4,8} {6}.

For example, the associate class containing 2 consists of 2, 2 · 5 = 10, 2 · 7 = 2,
and 2 ·11 = 10.

Now we can define greatest common divisors properly.
Let R be an integral domain. (Remember: this means that R is a commutative

ring with identity and has no divisors of zero.) We say that a divides b in R (written
as usual as a | b) if there exists x∈R with b = ax. Notice that every element divides
0, whereas 0 doesn’t divide anything else except 0. Also, 1 divides any element
of R, but the only elements which divide 1 are the units of R. [Check all these
claims!]

Proposition 2.21 In an integral domain R, two elements a and b are associates if
and only if a | b and b | a.
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Proof Suppose that a and b are associates. Then b = au for some unit u, so a | b.
Also a = bu−1, so b | a.

Conversely, suppose that a | b and b | a. If a = 0, then also b = 0 and a,b
are associates. So suppose that a 6= 0. Then there are elements x and y such that
b = ax and a = by. We have axy = a, so a(1− xy) = 0. Since R is an integral
domain and a 6= 0, we must have 1− xy = 0, or xy = 1. So x and y are units, and
a and b are associates.

Now we say that d is a greatest common divisor of a and b if

• d | a and d | b;

• if e is any element such that e | a and e | b, then e | b.

We abbreviate “greatest common divisor” to gcd.
Notice that, in general, “greatest” does not mean “largest” in any obvious way.

Both 6 and −6 are greatest common divisors of 12 and 18 in Z, for example.

Proposition 2.22 If d is a gcd of two elements a,b in an integral domain R, then
another element d′ is a gcd of a and b if and only if it is an associate of d.

Proof Suppose first that d and d′ are both gcds of a and b. Then d′ | d and d | d′

(using the second part of the definition), so that d and d′ are associates.
Conversely, suppose that d is a gcd of a and b (say a = dx and b = dy), and d′

an associate of d, say d′ = du for some unit u. Then

• a = d′u−1x and b = d′u−1y, so d′ | a and d′ | b;

• suppose that e | a and e | b. Then e | d, say d = ez; so we have d′ = eu−1z
and e | d′.

Thus d′ is a gcd of a and b.

Thus we can say: the greatest common divisor of a and b, if it exists, is “unique
up to associate”, that is, any two gcds are associates. We use the notation gcd(a,b)
to denote some (unspecified) greatest common divisor. In the integers, we can
make the convention that we choose the non-negative element of the associate
pair as the gcd.
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2.4.2 Unique factorisation domains
We are interested in the property of “unique factorisation” of integers, that is, any
integer other than 0,+1,−1 can be uniquely factorised into primes. Of course, the
factorisation is not quite unique, for two reasons:

(a) the multiplication is commutative, so we can change the order: 6 = 2 ·3 =
3 ·2.

(b) we will see that −2 and −3 also count as “primes”, and 6 = 2 · 3 = (−2) ·
(−3).

By convention, 1 is not a prime, since it divides everything. The same holds for
−1 (and only these two integers, since they are the only units in Z.) Accordingly,
we will specify that irreducible elements (the analogue of primes in a general
domain) should not be zero or units, and that we only try to factorise elements
which are not zero or a unit.

So we make the following definitions. Let R be an integral domain.

(a) An element p ∈ R is irreducible if p is not zero or a unit, but whenever
p = ab, then one of a and b is a unit (and the other therefore an associate of
p).

(b) R is a unique factorisation domain if it has the following properties:

• every element a ∈ R which is not zero or a unit can be written as a
product of irreducibles;

• if p1, . . . , pm,q1, . . . ,qn are irreducibles and

p1 p2 · · · pm = q1q2 · · ·qn,

then m = n and, after possibly permuting the factors in one product, pi
and qi are associates for i = 1, . . . ,m.

Note that, if an element p is irreducible, then so is every associate of p. If
the second condition in the definition of a unique factorisation holds, we say that
“factorisation is unique up to order and associates”. As we saw, this is the best we
can expect in terms of unique factorisation!

The ring Z is a unique factorisation domain; so is the ring F [x] of polynomials
over any field F . We will prove these things later on; we will see that it is the Eu-
clidean algorithm which is crucial to the proof, and the integers and polynomials
over a field both have a Euclidean algorithm.

Note that, to decide whether a ring is a unique factorisation domain, we have
first to check that it really is an integral domain, and second to find all the units
(so that we know when two elements are associates).
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Example Here is an example of a ring which is an integral domain but not a
unique factorisation domain. Let

R = {a+b
√
−5 : a,b ∈ Z}.

We show first that R is a subring of C. Take two elements of R, say r = a+b
√
−5

and s = c+d
√
−5, with a,b,c,d ∈ Z. Then

r− s = (a− c)+(b−d)
√
−5 ∈ R,

rs = (ac−5bd)+(ad +bc)
√
−5 ∈ R,

since a− c,b−d,ac−5bc,ad +bc ∈ Z. So the Subring Test applies.
R is clearly an integral domain: there do not exist two nonzero complex num-

bers whose product is zero.
What are the units of R? To answer this, we use the fact that |a + b

√
−5|2 =

a2 +5b2. Now suppose that a+b
√
−5 is a unit, say

(a+b
√
−5)(c+d

√
−5) = 1.

Taking the modulus and squaring gives

(a2 +5b2)(c2 +5d2) = 1.

So a2 +5b2 = 1 (it can’t be −1 since it is positive). The only solution is a =±1,
b = 0. So the only units are ±1, and so r is associate only to r and −r.

Now we show that 2 is irreducible. Suppose that

2 = (a+b
√
−5)(c+d

√
−5).

Taking the modulus squared again gives

4 = (a2 +5b2)(c2 +5d2).

So a2 + 5b2 = 1, 2 or 4. But the equation a2 + 5b2 = 2 has no solution, while
a2 + 5b2 = 1 implies a = ±1, b = 0, and a2 + 5b2 = 4 implies c2 + 5d2 = 1, so
that c =±1, d = 0. So the only factorisations are

2 = 2 ·1 = 1 ·2 = (−2) · (−1) = (−2) · (−1) :

in each case, one factor is a unit and the other is an associate of 2.
In a similar way we can show that 3, 1+

√
−5 and 1−

√
−5 are irreducible.

Now consider the factorisations

6 = 2 ·3 = (1+
√
−5)(1−

√
−5).

These are two factorisations into irreducibles, which are not equivalent up to order
and associates. So R is not a unique factorisation domain!
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2.4.3 Principal ideal domains
Let R be a commutative ring with identity. We denote by aR, or by 〈a〉, the set
{ar : r ∈ R} of all elements divisible by a.

Lemma 2.23 〈a〉 is an ideal of R containing a, and if I is any ideal of R containing
a then 〈a〉 ⊆ I.

Proof We apply the Ideal Test. If ar1, ar2 ∈ 〈a〉, then

ar1−ar2 = a(r1− r2) ∈ 〈a〉.

Also, if ar ∈ 〈a〉 and x ∈ R, then

(ar)x = a(rx) ∈ 〈a〉.

So 〈I〉 is an ideal.
Since R has an identity element 1, we have a = a1 ∈ 〈a〉.
Finally, if I is any ideal containing a, then (by definition of an ideal) we have

ar ∈ I for any r ∈ R; that is, 〈a〉 ⊆ I.

Lemma 2.24 Let R be an integral domain. Then 〈a〉= 〈b〉 if and only if a and b
are associates.

Proof 〈a〉 = 〈b〉 means, by definition, that each of a and b is a multiple of the
other, that is, they are associates.

We call 〈a〉 the ideal generated by a and say that it is a principal ideal.
More generally, if a1, . . . ,an ∈ R (where R is a commutative ring with identity,

then we let
〈a1, . . . ,an〉= {r1a1 + · · ·+ rnan : r1, . . . ,rn ∈ R}.

Then it can be shown, just as above, that 〈a1, . . . ,an〉 is an ideal of R contain-
ing a1, . . . ,an, and that any ideal which contains these elements must contain
〈a1, . . . ,an〉. We call this the ideal generated by a1, . . . ,an.

A ring R is a principal ideal domain if every ideal is principal. We will see
later that Z is a principal ideal domain.

Proposition 2.25 Let R be a principal ideal domain. Then any two elements of R
have a greatest common divisor; in fact, d = gcd(a,b) if and only if 〈a,b〉= 〈d〉.

Proof Suppose that R is a principal ideal domain. Then 〈a,b〉, the ideal generated
by a and b, is a principal ideal, so it is equal to 〈d〉, for some d ∈ R. Now we claim
that d = gcd(a,b).
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• a ∈ 〈d〉, so d | a. Similarly d | b.

• Also, d ∈ 〈a,b〉, so d = ua + vb for some u,v ∈ R. Now suppose that e | a
and e | b, say a = ep and b = eq. Then d = ua + vb = e(up + vq), so that
e | d.

The claim is proved.
Since any two gcds of a and b are associates, and any two generators of 〈a,b〉

are associates, the result is proved.

Example The ring Z is a principal ideal domain. That means that the only ideals
in Z are the sets 〈n〉 = nZ, for n ∈ Z. We will deduce this from a more general
result in the next section.

Now it is the case that any principal ideal domain is a unique factorisation
domain. We will not prove all of this. The complete proof involves showing two
things: any element which is not zero or a unit can be factorised into irreducibles;
and any two factorisations of the same element differ only by order and associates.
We will prove the second of these two assertions. See the appendix to this chapter
for comments on the first.

Lemma 2.26 Let R be a principal ideal domain; let p be irreducible in R, and
a,b ∈ R. If p | ab, then p | a or p | b.

Proof Suppose that p | ab but that p does not divide a. Then we have gcd(a, p) =
1, and so there exist u,v ∈ R with 1 = ua+ vp. So b = uab+ vpb. But p | uab by
assumption, and obviously p | vpb; so p | b, as required.

This lemma clearly extends. If p is irreducible and divides a product a1a2 · · ·an,
then p must divide one of the factors. For either p | a1 or p | a2 · · ·an; in the latter
case, proceed by induction.

Theorem 2.27 Let R be a principal ideal domain, and suppose that

a = p1 p2 · · · pm = q1q2 · · ·qn,

where p1, . . . , pm,q1, . . . ,qn are irreducible. Then m = n and, after possibly per-
muting the factors, pi and qi are associates for i = 1, . . . ,m.

Proof Obviously p1 divides q1 · · ·qn, so p1 must divide one of the factors, say
p1 | qi. Since p1 and qi are irreducible, they must be associates. By permuting the
order of the qs and adjusting them by unit factors, we can assume that p1 = q1.
Then p2 · · · pm = q2 · · ·qn, and we proceed by induction.
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Example Here is an example of an integral domain which is not a principal ideal
domain. Consider the ring R = Z[x] of polynomials over the integers. Let I be the
set of all such polynomials whose constant term is even. Then I is an ideal in R: if
f and g are polynomials with even constant term, then so is f −g, and so is f h for
any polynomial h. But I is not a principal ideal. For I contains both the constant
polynomial 2 and the polynomial x of degree 1. If I = 〈a〉, then a must divide both
2 and x, so a =±1. But ±1 /∈ I.

The polynomials 2 and x are both irreducible in R, and so their gcd is 1. But 1
cannot be written in the form 2u+ xv for any polynomials u and v.

The ring Z[x] is a unique factorisation domain (see the Appendix to this chap-
ter).

2.4.4 Euclidean domains
Any two integers have a greatest common divisor, and we can use the Euclidean
algorithm to find it. You may also have seen that the Euclidean algorithm works
for polynomials. We now give the algorithm in a very general form.

Let R be an integral domain. A Euclidean function on R is a function d from
the set R \ {0} (the set of non-zero elements of R) to the set N of non-negative
integers satisfying the two conditions

(a) for any a,b ∈ R with a,b 6= 0, we have d(ab)≥ d(a);

(b) for any a,b ∈ R with b 6= 0, there exist q,r ∈ R such that

• a = bq+ r;

• either r = 0, or d(r) < d(b).

We say that an integral domain is a Euclidean domain if it has a Euclidean func-
tion.

Example Let R = Z, and let d(a) = |a| for any integer a.

Example Let R = F [x], the ring of polynomials over F , where F is a field. For
any non-zero polynomial f (x), let d( f (x)) be the degree of the polynomial f (x)
(the index of the largest non-zero coefficient).

Both of these examples are Euclidean functions.

(a) In the integers, we have d(ab) = |ab| = |a| · |b| ≥ |a| = d(a), since b 6= 0.
In the polynomial ring F [x], we have

d(ab) = deg(ab) = deg(a)+deg(b)≥ deg(a),
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since if the leading terms of a and b are anxn and bmxm respectively then the
leading term of ab is anbmxn+m.

(b) In each case this is the “division algorithm”: we can divide a by b to obtain a
quotient q and remainder r, where r is smaller than the divisor b as measured
by the appropriate function d.

You will have seen how to use the Euclidean algorithm to find the greatest
common divisor of two integers or two polynomials. The same method works in
any Euclidean domain. It goes like this. Suppose that R is a Euclidean domain,
with Euclidean function d. Let a and b be any two elements of R. If b = 0, then
gcd(a,b) = a. Otherwise, proceed as follows. Put a = a0 and b = a1. If ai−1 and
ai have been constructed, then

• if ai = 0 then gcd(a,b) = ai−1;

• otherwise, write ai−1 = aiq+r, with r = 0 or d(r) < d(ai), and set ai+1 = r;
repeat the procedure for ai and ai+1.

The algorithm terminates because, as long as ai 6= 0, we have

d(ai) < d(ai−1) < · · ·< d(a1).

Since the values of d are non-negative integers, this chain must stop after a finite
number of steps.

To see that the result is correct, note that, if a = bq+ r, then

gcd(a,b) = gcd(b,r)

(as an easy calculation shows: the common divisors of a and b are the same as the
common divisors of b and r. So we have gcd(ai−1,ai) = gcd(a,b) as long as ai is
defined. At the last step, ai = 0 and so gcd(a,b) = gcd(ai−1,0) = ai−1.

The algorithm can also be used to express gcd(a,b) in the form ua + vb for
some u,v ∈ R. For a and b themselves are both expressible in this form; and, if
ai−1 = ui−1a+ vi−1b and ai = uia+ vib, then with ai−1 = qai +ai+1, we have

ai+1 = ai−1−qai = (ui−1−qui)a+(vi−1−qvi)b.

Example Find gcd(204,135). We have

204 = 135 ·1+69,

135 = 69 ·1+66,

69 = 66 ·1+3,

66 = 3 ·22,
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so gcd(204,135) = 3. To express 3 = 204u+135v, we have

69 = 204 ·1−135 ·1,

66 = 135−69 = 135 ·2−204 ·1,

3 = 69−66 = 204 ·2−135 ·3.

We will show that a Euclidean domain is a unique factorisation domain. First
we need one lemma. Note that, if a and b are associates, then b = au, so d(b) ≥
d(a), and also a = bu−1, so d(a)≥ d(b); so we have d(a) = d(b).

Lemma 2.28 Let R be a Euclidean domain. Suppose that a and b are non-zero
elements of R such that a | b and d(a) = d(b). Then a and b are associates.

Proof Let a = bq + r for some q,r, as in the second part of the definition. Sup-
pose that r 6= 0. Now b = ac for some element c; so a = acq + r. Thus, r =
a(1−cq), and since r 6= 0 we have d(r)≥ d(a), contrary to assumption. So r = 0.
Then b | a; since we are given that a | b, it follows that a and b are associates.

Theorem 2.29 (a) A Euclidean domain is a principal ideal domain.

(b) A Euclidean domain is a unique factorisation domain.

Proof (a) Let R be a Euclidean domain, and let I be an ideal in R. If I = {0},
then certainly I = 〈0〉 and I is principal. So suppose that I is not {0}. Since the
values of d(x) for x ∈ I are non-negative integers, there must be a smallest value,
say d(a). We will claim that I = 〈a〉.

First, take b ∈ 〈a〉, say b = ax. Then b ∈ I, by definition of an ideal.
Next, take b ∈ I. Use the second part of the definition of a Euclidean function

to find elements q and r such that b = aq + r, with either r = 0 or d(r) < d(a).
Suppose that r 6= 0. Then b ∈ I and aq ∈ I, so r = b = aq ∈ I; but d(r) < d(a)
contradicts the fact that d(a) was the smallest value of the function d on the non-
zero elements of I. So the supposition is impossible; that is, r = 0, and b = aq ∈
〈a〉.

So I = 〈a〉 is a principal ideal.

(b) Again let R be a Euclidean domain. We show that any nonzero non-unit
of R can be factorised into irreducibles. We showed in the last section that the
factorisation is unique (because R is a principal ideal domain)

Choose any element a ∈ R such that a 6= 0 and a is not a unit. We have to
show that a can be factorised into irreducibles. The proof is by induction on d(a);
so we can assume that any element b with d(b) < d(a) has a factorisation into
irreducibles.
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If a is irreducible, then we have the required factorisation with just one term.
So suppose that a = bc where b and c are not units. If d(b) < d(a) and d(c) < d(a)
then, by induction, each of b and c has a factorisation into irreducibles; putting
these together we get a factorisation of a. So suppose that d(a) ≥ d(b). We also
have d(b) ≥ d(a), by the first property of a Euclidean function; so d(a) = d(b).
We also have b | a; by the Lemma before the Theorem, we conclude that a and b
are associates, so that c is a unit, contrary to assumption.

Corollary 2.30 (a) Z is a principal ideal domain and a unique factorisation
domain.

(b) For any field F, the ring F [x] of polynomials over F is a principal ideal
domain and a unique factorisation domain.

Proof This follows from the theorem since we have seen that these rings are
integral domains and have Euclidean functions, and so are Euclidean domains.

2.4.5 Appendix
More is true than we have proved above. You will meet these theorems in the
Algebraic Structures II course next term.

The connection between the three types of domain is:

Theorem 2.31

Euclidean domain⇒ principal ideal domain⇒ unique factorisation domain.

We proved most of this: we showed that a Euclidean domain is a principal
ideal domain, and that in a principal ideal domain factorisations are unique if they
exist. The proof that factorisations into irreducibles always exist in a principal
ideal domain is a little harder.

Neither implication reverses. We saw that Z[x] is not a principal ideal domain,
though it is a unique factorisation domain (see below). It is harder to construct a
ring which is a principal ideal domain but not a Euclidean domain, though such
rings do exist.

Another way to see the increasing strength of the conditions from right to left
is to look at greatest common divisors.

• In a unique factorisation domain, any two elements a and b have a greatest
common divisor d (which is unique up to associates).

• In a principal ideal domain, any two elements a and b have a greatest com-
mon divisor d (which is unique up to associates), and d can be written in
the form d = xa+ yb.
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• In a Euclidean domain, any two elements a and b have a greatest common
divisor d (which is unique up to associates), and d can be written in the form
d = xa + yb; moreover, the gcd, and the elements x and y, can be found by
the Euclidean algorithm.

You will also meet the theorem known as Gauss’s Lemma:

Theorem 2.32 If R is a unique factorisation domain, then so is R[x].

This result shows that Z[x] is a unique factorisation domain, as we claimed
above.

2.5 Fields
As you know from linear algebra, fields form a particularly important class of
rings, since in linear algebra the scalars are always taken to form a field.

Although the ring with a single element 0 would technically qualify as a field
according to our definition, we always rule out this case. Thus,

A field must have more than one element.

Another way of saying the same thing is that, in a field, we must have 1 6= 0. (If
there is any element x 6= 0 in a ring with identity, then 1 · x = x 6= 0 = 0 · x, and so
1 6= 0.)

The “standard” examples of fields are the rational, real and complex numbers,
and the integers mod p for a prime number p.

In this chapter, we will see how new fields can be constructed. The most im-
portant method of construction is adjoining a root of a polynomial. The standard
example of this is the construction of C by adjoining the square root of −1 (a
root of the polynomial x2 + 1 = 0) to R. We will also see that finite fields can be
constructed in this way.

Also we can build fields as fields of fractions; the standard example is the
construction of the rationals from the integers.

2.5.1 Maximal ideals
In this chapter, R always denotes a commutative ring with identity. As above, we
assume that the identity element 1 is different from the zero element 0: that is,
0 6= 1.

An ideal I of R is said to be proper if I 6= R. An ideal I is maximal if I 6= R and
there does not exist an ideal J with I ⊂ J ⊂ R; that is, any ideal J with I ⊆ J ⊆ R
must satisfy J = I or J = R.
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Lemma 2.33 Let R be a commutative ring with identity. Then R is a field if and
only if it has no ideals except {0} and R.

Proof If u∈ R is a unit, then the only ideal containing u is the whole ring R. (For,
given any ideal I with u ∈ I, and any r ∈ R, we have r = u(u−1r) ∈ I, so I = R.) If
R is a field, then every non-zero element is a unit, and so any ideal other than {0}
is R.

Conversely, suppose that the only ideals are 0 and R. We have to prove that
multiplicative inverses exist (axiom (M3)). Take any element a ∈ R with a 6= 0.
Then 〈a〉 = R, so 1 ∈ 〈a〉. This means that there exists b ∈ R with ab = 1, so
b = a−1 as required.

Proposition 2.34 Let F be a commutative ring with identity, and I a proper ideal
of R. Then R/I is a field if and only if I is a maximal ideal.

Proof By the Second Isomorphism Theorem, ideals of R/I correspond to ideals
of R containing I. Thus, I is a maximal ideal if and only if the only ideals of R/I
are zero and the whole ring, that is, R/I is a field (by the Lemma).

Proposition 2.35 Let R be a principal ideal domain, and I = 〈a〉 an ideal of R.
Then

(a) I = R if and only if a is a unit;

(b) I is a maximal ideal if and only if a is irreducible.

Proof (a) If a is a unit, then for any r ∈ R we have r = a(a−1r) ∈ 〈a〉, so 〈a〉= R.
Conversely, if 〈a〉= R, then 1 = ab for some b ∈ R, and a is a unit.

(b) Since R is a PID, any ideal containing 〈a〉 has the form 〈b〉 for some b ∈ R.
Moreover, 〈a〉 ⊆ 〈b〉 if and only if b | a. So 〈a〉 is maximal if and only if, whenever
b | a, we have either b is a unit (so 〈b〉= R) or b is an associate of a (so 〈b〉= 〈a〉.

Corollary 2.36 Z/nZ is a field if and only if n is prime.

Proof Z is a principal ideal domain, and irreducibles are just the prime integers.

The field Z/pZ, for a prime number p, is often denoted by Fp.
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2.5.2 Adding the root of a polynomial
The other important class of principal ideal domains consists of the polynomial
rings over fields. For these, Propositions 2.34 and 2.35 give the first part of the
following result.

Proposition 2.37 Let F be a field and f (x) an irreducible polynomial over F.
Then K = F [x]/〈 f (x)〉 is a field. Moreover, there is an isomorphism from F to a
subfield of K; and, if α denotes the coset 〈 f (x)〉+ x, then we have the following,
where n is the degree of f (x), and we identify an element of F with its image under
the isomorphism:

(a) every element of k can be uniquely written in the form

c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1;

(b) f (α) = 0.

Before proving this, we notice that this gives us a construction of the complex
numbers; Let F = R, and let f (x) = x2 +1 (this polynomial is irreducible over R).
Use the notation i instead of α for the coset 〈 f (x)〉+ x. Then we have n = 2, and
the two parts of the proposition tell us that

(a) every element of K can be written uniquely as a+bi, where a,b ∈ R;

(b) i2 =−1.

Thus, K = R[x]/〈x2 + 1〉 is the field C. The general theory tells us that this con-
struction of C does produce a field; it is not necessary to check all the axioms.

Proof (a) Let I denote the ideal 〈 f (x)〉. Remember that the elements of the
quotient ring F [x]/I are the cosets of I in F [x]. The isomorphism θ from F to
K = F [x]/I is given by

aθ = I +a for a ∈ F.

Clearly θ is one-to-one; for if aθ = bθ , then b−a ∈ I, but I consists of all mul-
tiples of the irreducible polynomial f (x), and cannot contain any constant poly-
nomial except 0, so a = b. It is routine to check that θ preserves addition and
multiplication. From now on, we identify a with the coset I + a, and regard F as
a subfield of F [x]/I.

Let g(x) ∈ F [x]. Then by the Euclidean algorithm we can write

g(x) = f (x)q(x)+ r(x),



2.5. FIELDS 53

where r(x) = 0 or r(x) has degree less than n. Also, since g(x)− r(x) is a multiple
of f (x), it belongs to I, and so the cosets I +g(x) and I + r(x) are equal. In other
words, every coset of I in F [x] has a coset representative with degree less than n
(possibly zero). This coset representative is unique, since the difference between
any two coset representatives is a multiple of f (x).

Now let r(x) = c0 + c1x+ c2x2 + · · ·+ cn−1xn−1. We have

I + r(x) = I +(c0 + c1x+ c2x2 + · · ·+ cn−1xn−1)
= (I + c0)+(I + c1)(I + x)+(I + c2)(I + x)2 + · · ·+(I + cn−1)(I + x)n−1)
= c0 + c1α + c2α

2 + · · ·+ cn−1α
n−1.

Here, in the second line, we use the definition of addition and multiplication of
cosets, and in the third line we put I+x = α and use our identification of I+c = cθ

with c for c ∈ F .
So we have the required representation. Clearly it is unique.

(b) As before, if f (x) = a0 + a1x + · · ·+ anxn, we have I + f (x) = I (since
f (x) ∈ I), and so

0 = I +0
= I +(a0 +a1x+ · · ·+anxn)
= (I +a0)+(I +a1)(I + x)+ · · ·+(I +an)(I + x)n

= a0 +a1α + · · ·+anα
n

= f (α).

2.5.3 Finite fields

Suppose that f (x) is an irreducible polynomial of degree n over the field Fp of
integers mod p. Then K = Fp[x]/〈 f (x)〉 is a field, by Proposition 2.37. According
to that proposition, its elements can be written uniquely in the form

c0 + c1α + · · ·+ cn−1α
n−1

for c0, . . . ,cn−1 ∈Fp. There are p choices for each of the n coefficients c0,c1, . . . ,cn−1,
giving a total of pn elements altogether. Thus:

Proposition 2.38 Let f (x) be an irreducible polynomial of degree n over Fp.
Then K = Fp[x]/〈 f (x)〉 is a field containing pn elements.
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Example Let p = 2 and n = 2. The coefficients of a polynomial over F2 must
be 0 or 1, and so there are just four polynomials of degree 2, namely x2, x2 + 1,
x2 + x and x2 + x+1. We have

x2 = x · x, x2 + x = x · (x+1), x2 +1 = (x+1) · (x+1)

(remember that 1 + 1 = 0 in F2!), and so the only irreducible polynomial is x2 +
x+1. Thus, there is a field consisting of the four elements 0,1,α,1+α , in which
α2 + α + 1 = 0, that is, α2 = 1 + α (since −1 = +1 in F2!) The addition and
multiplication tables are easily found (with β = 1+α) to be

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α

We have, for example,

α +β = α +1+α = 1,

αβ = α(1+α) = α +α
2 = 1,

β
2 = (1+α)2 = 1+α = β .

The basic facts about finite fields were one
of the discoveries of Évariste Galois, the
French mathematician who was killed in a
duel in 1832 at the age of 19. Most of his
mathematical work, which is fundamental
for modern algebra, was not published until
fifteen years after his death, but the result on
finite fields was one of the few papers
published during his lifetime.

Galois proved the following theorem:

Theorem 2.39 The number of elements in a finite field is a power of a prime. For
any prime power pn, there is a field with pn elements, and any two finite fields
with the same number of elements are isomorphic.

We commemorate Galois by using the term Galois field for finite field. If
q = pn, then we often denote the field with q elements by GF(q). Thus the field
on the preceding page is GF(4). (Note that GF(4) is not the same as Z/4Z, the
integers mod 4, which is not a field!)
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2.5.4 Field of fractions
In this section we generalise the construction of the rational numbers from the
integers. [This section and the two following were not covered in the lectures, but
you are encouraged to read them for interest.]

Theorem 2.40 Let R be an integral domain. Then there is a field F such that

(a) R is a subring of F;

(b) every element of F has the form ab−1, for a,b ∈ R and b 6= 0.

The field F is called the field of fractions of R, since every element of F can
be expressed as a fraction a/b.

We will build F as the set of all fractions of this form. But we have to answer
two questions?

• When are two fractions equal?

• How do we add and multiply fractions?

Thus, we start with the set X consisting of all ordered pairs (a,b), with a,b∈ R
and b 6= 0. (That is, X = R× (R \ {0}).) The ordered pair (a,b) will “represent”
the fraction a/b. So at this point we have to answer the first question above:
when does a/b = c/d? Multiplying up by bd, we see that this holds if and only if
ad = bc. Thus, we define a relation ∼ on X by the rule

(a,b)∼ (c,d) if and only if ad = bc.

We have to show that this is an equivalence relation.

reflexive: ab = ba, so (a,b)∼ (a,b).

symmetric: If (a,b)∼ (c,d), then ad = bc, so cb = da, whence (c,d)∼ (a,b).

transitive: Suppose that (a,b) ∼ (c,d) and (c,d) ∼ (e, f ). Then ad = bc and
c f = de. So ad f = bc f = bde. This means that d(a f − be) = 0. But
d 6= 0 and R is an integral domain, so we conclude that a f = be, so that
(a,b)∼ (e, f ).

Now we let F be the set of equivalence classes of the relation ∼. We write the
equivalence class containing (a,b) as a/b. Thus we do indeed have that a/b = c/d
if and only if ad = bc.

Now we define addition and multiplication by the “usual rules”:
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• (a/b)+(c/d) = (ad +bc)/(bd);

• (a/b)(c/d) = (ac)/(bd).

(To see where these rules come from, just calculate these fractions in the usual
way!) Again, since b 6= 0 and d 6= 0, we have bd 6= 0, so these operations make
sense. We still have to show that they are well-defined, that is, a different choice
of representatives would give the same result. For addition, this means that, if
(a,b)∼ (a′,b′) and (c,d)∼ (c′,d′), then (ad +bc,bd)∼ (a′d′+b′c′,b′d′). Trans-
lating, we have to show that

if ab′ = ba′ and cd′ = dc′, then (ad +bc)b′d′ = bd(a′d′+b′c′),

a simple exercise. The proof for multiplication is similar.
Now we have some further work to do. We have to show that

• F , with addition and multiplication defined as above, is a field;

• the map θ defined by aθ = a/1 is a homomorphism from R to F , with kernel
{0} (so that R is isomorphic to the subring {a/1 : a ∈ R} of F).

These are fairly straightforward to prove, and their proof finishes the theorem.

2.5.5 Appendix: Simple rings

We saw at the start of this chapter (Lemma 2.33) that, if R is a commutative
ring with identity having no ideals except the trivial ones, then R is a field. You
might think that, if we simply leave out the word “commutative”, then we obtain a
characterisation of division rings. Unfortunately this is not so. The material here
is not part of the course; you can find a proof in the course textbook if you are
interested. Let R be a ring with identity. We say that R is a simple ring if the only
ideals in R are {0} and R. Then every division ring (and in particular every field)
is a simple ring, and our earlier argument shows that a commutative simple ring
is a field. But we have the following fact:

Theorem 2.41 Let R be a simple ring (with identity). Then the ring Mn(R) of
n×n matrices over R is a simple ring.

In particular, the ring of n×n matrices over a field F is a simple ring, although
it is not commutative and is not a division ring for n > 1.
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2.5.6 Appendix: The number systems
This section is not part of the course and is just for general interest. How do we
build the number systems Z, Q, R and C?

I’ll leave out the construction of Z.
Kronecker said, “God made the integers; the
rest is the work of man”, and though we do
now know how to construct the integers
(starting with nothing but the empty set), it is
not straightforward.

We construct Q as the field of fractions of Z.
To construct R from Q, we borrow an idea from analysis, the definition of

a Cauchy sequence: the sequence (a0,a1,a2, . . .) is a Cauchy sequence if, given
any ε > 0, there exists a positive integer N such that, for all m,n > N, we have
|am−an|< ε .

We let R be the set of all Cauchy sequences of rational numbers. We make
R into a ring by adding and multiplying sequences term by term. Then let I be
the set of all null sequences of rational numbers (sequences which converge to 0.)
Then it can be shown that R is a commutative ring with identity, and I a maximal
ideal; so R/I is a field. This is the field R of real numbers.

We saw that C is constructed from R by adding a root of the irreducible poly-
nomial x2 +1: that is, C = R[x]/〈x2 +1〉.
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Chapter 3

Groups

In the remainder of the notes we will be talking about groups. A group is a struc-
ture with just one binary operation, satisfying four axioms. So groups are only
half as complicated as rings! As well as being new material, this part will help
you revise the first part of the course, since a lot of things (subgroups, homo-
morphisms, Isomorphism Theorems) work in almost exactly the same way as for
rings.

3.1 Introduction

3.1.1 Definition of a group
A group is a set G with one binary operation (which we write for now as ◦ in infix
notation1) satisfying the following four axioms (G0)–(G3):

(G0) (Closure law) For any g,h ∈ G, we have g◦h ∈ G.

(G1) (Associative law) For any g,h,k ∈ G, we have (g◦h)◦ k = g◦ (h◦ k).

(G2) (Identity law) There is an element e∈G with the property that g◦e = e◦g =
g for all g ∈ G. (The element e is called the identity element of G.)

(G3) (Inverse law) For any element g ∈ G, there is an element h ∈ G satisfying
g ◦ h = h ◦ g = e. (We denote this element h by g−1, and call it the inverse
of g.)

If a group G also satisfies the condition

1Remember that this means that the result of applying the operation to a and b is written as
a◦b.

59
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(G4) (Commutative law) For any g,h ∈ G, we have g◦h = h◦g,

then G is called a commutative group or (more often) an Abelian group.

3.1.2 Examples of groups
Axioms (G0)–(G4) for a group are just axioms (A0)–(A4) for a ring but using
slightly different notation (the set is G instead of R, the operation is ◦ instead of
+, and so on). So we get our first class of examples:

Proposition 3.1 Let R be a ring. Then R with the operation of addition is an
Abelian group: the identity element is 0, and the inverse of a is −a.

This group is called the additive group or R.
This is not the only way to get groups from rings.

Proposition 3.2 Let R be a ring with identity, and U(R) the set of units of R. Then
U(R), with the operation of multiplication, is a group. If R is a commutative ring,
then U(R) is an Abelian group.

This group is called the group of units of R.

Proof Look back to Lemma 2.20. Let U(R) be the set of units of R.

(G0) Lemma 5.1(c) shows that, if u and v are units, then so is uv. So U(R) is
closed for multiplication.

(G1) The associative law for multiplication holds for all elements of R (by Ax-
iom (M1) for rings), and so in particular for units.

(G2) Lemma 5.1(a) shows that 1 is a unit. It clearly plays the role of the identity
element.

(G3) Lemma 5.1(b) shows that, if u is a unit, then so is u−1.

(G4) For the last part of the Proposition, if R is a commutative ring, then (M4)
holds, so that uv = vu for all u,v ∈ R; in particular, this holds when u and v
are units.

Example If F is a field, then every non-zero element of F is a unit. So the set of
non-zero elements forms an Abelian group with the operation of multiplication.
This is called the multiplicative group of the field.
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Example A matrix A is a unit in Mn(F), where F is a field, if and only if
det(A) 6= 0. So the set of matrices with non-zero determinant is a group. This
group is called the general linear group, and written GL(n,F). If n > 1, this
group is not Abelian.

Direct product This construction corresponds to the direct sum for rings.
Let G1 and G2 be groups. The direct product G1×G2 is defined as follows:

• the set of elements is the Cartesian product (which is also denoted by G1×
G2), the set of all ordered pairs (g1,g2) with g1 ∈ G1 and g2 ∈ G2;

• the group operation is “componentwise”, that is,

(g1,g2)◦ (h1,h2) = (g1 ◦h1,g2 ◦h2).

It is an exercise to prove that it is a group.

Cayley tables As with any binary operation, the group operation can be repre-
sented by giving an operation table. In the case of a group, the operation table is
usually called the Cayley table of the group. In principle, given the Cayley table
of a finite group, we could check that all the group axioms are satisfied.

Here, for example, are the Cayley tables of two groups each with four ele-
ments.

◦ e x y z
e e x y z
x x y z e
y y z e x
z z e x y

◦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Each group is Abelian, as we can see because the tables are symmetric. These
two groups are obviously different: in the second group, each element is equal to
its inverse, whereas this is not true in the first group. (When we come to define
isomorphism, we will say that the two groups are not isomorphic.)

In fact, these groups are the additive groups of the rings Z/4Z and GF(4)
respectively.

3.1.3 Properties of groups
Some of these properties will look very familiar, since they are similar to what we
saw for rings.
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Uniqueness of identity element
The identity element of a group is unique. For suppose that there are two

identity elements, say e1 and e2. (This means that g◦e1 = e1 ◦g = g for all g, and
also g◦ e2 = e2 ◦g = g for all g.) Then

e1 = e1 ◦ e2 = e2.

Uniqueness of inverse
The inverse of a group element g is unique. For suppose that h and k are both

additive inverses of g. (This means that g◦h = h◦g = e and g◦k = k◦g = e – we
know now that there is a unique identity element e). Then

h = h◦ e = h◦ (g◦ k) = (h◦g)◦ k = e◦ k = k,

where we use the associative law in the third step.
We denote the inverse of g by g−1.

Composing more than two elements
We showed in Proposition 2.6 that, as long as the associative law holds, the

result of composing any number of elements is independent of the way that the
product is bracketed: for example, a ◦ ((b ◦ c) ◦ d) = (a ◦ b) ◦ (c ◦ d). Since the
associative law holds in a group, we have:

Proposition 3.3 Let g1, . . . ,gn be elements of a group G. Then the composition

g1 ◦g2 ◦ · · · ◦gn

is well-defined, independent of the way it is bracketed.

Cancellation laws

Proposition 3.4 In a group G, if a◦g = b◦g, then a = b. Similarly, if g◦a = g◦b,
then a = b.

Proof Suppose that a◦g = b◦g, and let h = g−1. Then

a = a◦ e = a◦ (g◦h) = (a◦g)◦h = (b◦g)◦h = b◦ (g◦h) = b◦ e = b.

The other law is proved similarly.
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These facts are the cancellation laws.

Proposition 3.5 The inverse of g◦h is h−1 ◦g−1.

Proof

(g◦h)◦ (h−1 ◦g−1) = g◦ (h◦h−1)◦g−1 = g◦ e◦g−1 = g◦g−1 = e,

using the associative law; and similarly (h−1 ◦g−1)◦ (g◦h) = e.

3.1.4 Notation
The notation g◦h for the group operation is a bit cumbersome, and we now change
things.

If we are only interested in Abelian groups, we use + as the symbol for the
group operation, 0 for the group identity, and −g for the inverse of g. This agrees
with the additive notation in a ring. Indeed, the additive group of a ring is an
Abelian group, and every Abelian group is the additive group of a ring. [To see
this, take the group operation as addition, and construct the zero ring: all products
are zero.]

For general groups which may not be Abelian, we use juxtaposition for the
group operation, 1 for the identity, and g−1 for the inverse of g. (This is like
multiplicative notation in a ring, but it is not true that every group is the group of
units in some ring!!)

This table gives the correspondences.

Type of group Operation Notation Identity Inverse
General ◦ g◦h e g−1

Abelian + g+h 0 −g
General Juxtaposition gh 1 g−1

For the rest of this course, our notation for the group operation will be juxta-
position.

3.1.5 Order
The term order has two quite different meanings in group theory: be careful not
to confuse them. In the next chapter we will see that there is a close relationship
between the two meanings.

The order of a group is the number of elements of the group. It may be finite
(in which case it is a positive integer), or infinite.



64 CHAPTER 3. GROUPS

To define the second kind of order, we introduce the notation gn. This means
the result of composing n factors g together:

gn = gg · · ·g (n factors).

More formally, g0 = 1, and for any positive integer n, gn = g ·gn−1.
The order of an element g in a group is defined as follows:

• If gn = 1 for some positive integer n, then the smallest such n is called the
order of g.

• If no such n exists, we say that g has infinite order.

Thus, the identity element always has order 1. If an element g has order 2, then
it is equal to its inverse (for g2 = 1 = gg−1 implies g = g−1 by the Cancellation
Law.)

Consider the additive group of the ring Z. (Recall that the operation is + and
the zero element is 0; so, instead of gn we write n ·g, and the order is the smallest
positive n such that n ·g = 0, or is infinite if no such n exists.) The element 1 has
infinite order, since there is no positive integer n such that n ·1 = 0.

In the first group in our two examples above of Cayley tables, the elements x
and z have order 4 (we have x2 = y, x3 = z, x4 = e which is the identity element),
while y has order 2. In the second group, all of a,b,c have order 2.

3.1.6 Symmetric groups
We end this chapter by defining an important class of groups.

Let X be any set. A permutation of X is a function g : X → X which is one-to-
one and onto, that is, a bijection from X to X . Recall the discussion of permuta-
tions in Chapter 1.

Let Sn be the set of all permutations of the set {1, . . . ,n}. We have

|Sn|= n! = n(n−1)(n−2) · · ·1.

For consider the two-line representation. The top row is (12 . . . n). The bottom
row consists of the same numbers in any order. Thus there are n possibilities for
the first entry in the bottom row; n−1 possibilities for the second (anything except
the first), n−2 possibilities for the third; and so on.

Now we define an operation on permutations as follows. If g is a permutation,
denote the image of the element x ∈ {1, . . . ,n} by xg. (As with homomorphisms,
we write the function on the right of its input.) Now if g and h are two permuta-
tions, their composition g1g2 is defined by

x(gh) = (xg)h for all x ∈ {1, . . . ,n}.
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In other words the rule is “apply g, then h”.
For example, if g is the permutation (1,3,5)(2,4)(6) in our above example,

and h = (1,2,3,4,5,6), then gh = (1,4,3,6)(2,5). You are strongly urged to
practice composing permutations given in cycle form!

Theorem 3.6 The set Sn of permutations of {1, . . . ,n}, with the operation of com-
position, is a group.

Proof (G0) If g and h are bijections, we have to show that gh is a bijection.

– To show that it is one-to-one, suppose that x(gh) = y(gh). By defi-
nition this means (xg)h = (yg)h. Since h is one-to-one, this implies
xg = yg; then, since g is one-to-one, this implies x = y.

– To show that it is onto, choose any element z ∈ {1, . . . ,n}. Since h is
onto, we can find y such that yh = z. Then since g is onto, we can find
x such that xg = y. Then x(gh) = (xg)h = yh = z.

(G1) Let g,h,k be three permutations. To show that g(hk) = (gh)k, we have
to show that these two permutations have the same effect on any element
x ∈ {1, . . . ,n}. Now we have

x(g(hk)) = (xg)(hk) = ((xg)h)k) = (x(gh))k = x((gh)k),

as required.

(G2) The identity permutation 1 is the permutation which leaves everything as it
was: that is, x1 = x for all x ∈ {1, . . . ,n}. Then x(1g) = (x1)g = xg for all
x, so that 1g = g; similarly g1 = g.

(G3) The inverse of a permutation g is simply the “inverse function” which un-
does the effect of g: that is, xg−1 = y if yg = x. Then it is clear that
gg−1 = g−1g = 1.

We call this group the symmetric group on n symbols, and denote it by Sn.

Proposition 3.7 Sn is not Abelian for n≥ 3.

Proof If g = (1,2) and h = (1,3) (all other points are fixed), then gh = (1,2,3)
but hg = (1,3,2).

Exercise Show that S2 is an Abelian group.
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Exercise Verify the following Cayley table for S3:

1 (1,2,3) (1,3,2) (1,2) (2,3) (1,3)
1 1 (1,2,3) (1,3,2) (1,2) (2,3) (1,3)

(1,2,3) (1,2,3) (1,3,2) 1 (2,3) (1,3) (1,2)
(1,3,2) (1,3,2) 1 (1,2,3) (1,3) (1,2) (2,3)
(1,2) (1,2) (1,3) (2,3) 1 (1,3,2) (1,2,3)
(2,3) (2,3) (1,2) (1,3) (1,2,3) 1 (1,3,2)
(1,3) (1,3) (2,3) (1,2) (1,3,2) (1,2,3) 1

We end with a result which you probably met in Discrete Maths.

Proposition 3.8 Let g be an element of Sn, written in cycle notation. Then the
order of g is the least common multiple of its cycle lengths.

Proof Take any cycle of g, say of length k. Then the points in this cycle return
to their original position after g has been applied k times. So gn fixes the points of
this cycle if and only if n is a multiple of k.

We deduce that gn = 1 if and only if n is a multiple of every cycle length. So
the order of g is the least common multiple of the cycle lengths.

So, of the elements of S3, the identity has order 1, the elements (1,2), (2,3)
and (1,3) have order 2, and (1,2,3) and (1,3,2) have order 3. (Remember that
(1,2) is really (1,2)(3), with a cycle of length 1; but this doesn’t alter the least
common multiple of the cycle lengths.)

3.2 Subgroups

This section corresponds to Section 2.2 on subrings.

3.2.1 Subgroups and subgroup tests

A subgroup of a group G is a subset of G which is a subgroup in its own right
(with the same group operation).

There are two subgroup tests, resembling the two subring tests.

Proposition 3.9 (First Subgroup Test) A non-empty subset H of a group G is a
subgroup of G if, for any h,k ∈ H, we have hk ∈ H and h−1 ∈ H.
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Proof We have to show that H satisfies the group axioms. The conditions of
the test show that it is closed under composition (G0) and inverses (G3). The
associative law (G1) holds in H because it holds for all elements of G. We have
only to prove (G2), the identity axiom.

We are given that H is non-empty, so choose h ∈ H. Then by assumption,
h−1 ∈ H, and then (choosing k = h−1) 1 = hh−1 ∈ H.

We can reduce the number of things to be checked from two to one:

Proposition 3.10 (Second Subgroup Test) A non-empty subset H of a group G
is a subgroup of G if, for any h,k ∈ H, we have hk−1 ∈ H.

Proof Choosing k = h, we see that 1 = hh−1 ∈ H. Now using 1 and h in place
of h and k, we see that h−1 = 1h−1 ∈ H. Finally, given h,k ∈ H, we know that
k−1 ∈ H, so hk = h(k−1)−1 ∈ H. So the conditions of the First Subgroup Test
hold.

Example Look back to the Cayley tables in the last chapter. In the first case,
{e,y} is a subgroup. In the second case, {e,a}, {e,b} and {e,c} are all subgroups.

3.2.2 Cyclic groups
If g is an element of a group G, we define the powers gn of G (for n∈Z) as follows:
if n is positive, then gn is the product of n factors g; g0 = 1; and g−n = (g−1)n.
The usual laws of exponents hold: gm+n = gm ·gn and gmn = (gm)n.

A cyclic group is a group C which consists of all the powers (positive and
negative) of a single element. If C consists of all the powers of g, then we write
C = 〈g〉, and say that C is generated by g.

Proposition 3.11 A cyclic group is Abelian.

Proof Let C = 〈g〉. Take two elements of C, say gm and gn. Then

gm ·gn = gm+n = gn ·gm.

Let C = 〈g〉. Recall the order of g, the smallest positive integer n such that
gn = 1 (if such n exists – otherwise the order is infinite).

Proposition 3.12 Let g be an element of the a group G. Then the set of all powers
(positive and negative) of g forms a cyclic subgroup of G. Its order is equal to the
order of g.
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Proof Let C = {gn : n ∈ Z}. We apply the Second Subgroup test: if gm,gn ∈C,
then (gm)(gn)−1 = gm−n ∈C. So C is a subgroup.

If g has infinite order, then no positive power of g is equal to 1. It follows that
all the powers gn for n ∈ Z are different elements. (For if gm = gn, with m > n,
then gn−m = 1.) So C is infinite.

Suppose that g has finite order n. We claim that any power of g is equal to one
of the elements g0 = 1,g1 = g, . . . ,gn−1. Take any power gm. Using the division
algorithm in Z, write m = nq+ r, where 0≤ r ≤ n−1. Then

gm = gnq+r = (gn)q ·gr = 1 ·gr = gr.

Furthermore, the elements 1,g, . . . ,gn−1 are all different; for if gr = gs, with 0 ≤
r < s≤ n−1, then gs−r = 1, and 0 < s− r < n, contradicting the fact that n is the
order of g (the smallest exponent i such that gi = 1).

Example The additive group of the ring Z/nZ is a cyclic group of order n,
generated by 1̄ = nZ + 1. Remember that the group operation is addition here,
and the identity element is zero, so in place of gn = 1 we have n1̄ = 0̄, which is
true in the integers mod n; moreover it is true that no smaller positive multiple of
1̄ can be zero.

Proposition 3.13 Let G be a cyclic group of finite order n. Then g has a cyclic
subgroup of order m for every m which divides n; and these are all the subgroups
of G.

Proof Let G = 〈g〉 = {1,g,g2, . . . ,gn−1}. If m divides n, let n = mk, and put
h = gk. Then hm = (gk)m = gn = 1, and clearly no smaller power of h is equal
to 1; so h has order m, and generates a cyclic group of order m.

Now let H be any subgroup of G. If H = {1}, then H is the unique cyclic
subgroup of order 1 in G, so suppose not. Let gm be the smallest positive power
of g which belongs to H. We claim that, if gk ∈ H, then m divides k. For let
k = mq+ r, where 0≤ r ≤ m−1. Then

gr = gmq+rg−mq = gk(gm)−q ∈ H,

so r = 0 (since m was the smallest positive exponent of an element of H. So H is
generated by gm. Now gn = 1 ∈ H, so m divides n, and we are done.

3.2.3 Cosets
Given any subgroup H of a group G, we can construct a partition of G into “cosets”
of H, just as we did for rings. But for groups, things are a bit more complicated.
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Because the group operation may not be commutative, we have to define two
different sorts of cosets.

Let H be a subgroup of a group G. Define a relation ∼r on G by the rule

x∼r y if and only if yx−1 ∈ H.

We claim that ∼r is an equivalence relation:

reflexive: For any x ∈ G, we have xx−1 = 1 ∈ H, so x∼r x.

symmetric: Suppose that x ∼r y, so that h = yx−1 ∈ H. Then h−1 = (yx−1)−1 =
xy−1 ∈ H, so y∼r x.

transitive: Suppose that x∼r y and y∼r z, so that h = yx−1 ∈H and k = zy−1 ∈H.
Then kh = (zy−1)(yx−1) = zx−1 ∈ H, so x∼r z.

The equivalence classes of this equivalence relation are called the right cosets
of H in G.

A right coset is a set of elements of the form Hx = {hx : h ∈ H}, for some
fixed element x ∈ G called the “coset representative”. For

y ∈ Hx⇔ y = hx for some h ∈ H ↔ yx−1 ∈ H ⇔ x∼r y.

We summarise all this as follows:

Proposition 3.14 If H is a subgroup of the group G, then G is partitioned into
right cosets of H in G, sets of the form Hx = {hx : h ∈ H}.

In a similar way, the relation ∼l defined on G by the rule

x∼l y if and only if x−1y ∈ H

is an equivalence relation on G, and its equivalence classes are the left cosets of H
in G, the sets of the form xH = {xh : h ∈ H}.

If G is an abelian group, the left and right cosets of any subgroup coincide,
since

Hx = {hx : h ∈ H}= {xh : h ∈ H}= xH.

This is not true in general:
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Example Let G be the symmetric group S3, and let H be the subgroup {1,(1,2)}
consisting of all permutations fixing the point 3. The right cosets of H in G are

H1 = {1,(1,2)},
H(1,3) = {(1,3),(1,2,3)},
H(2,3) = {(2,3),(1,3,2),

while the left cosets are

1H = {1,(1,2)},
(1,3)H = {(1,3),(1,3,2)},
(2,3)H = {(2,3),(1,2,3)}.

We see that, as expected, both right and left cosets partition G, but the two parti-
tions are not the same. But each partition divides G into three sets of size 2.

3.2.4 Lagrange’s Theorem

Lagrange’s Theorem states a very important relation between the orders of a finite
group and any subgroup.

Theorem 3.15 (Lagrange’s Theorem) Let H be a subgroup of a finite group G.
Then the order of H divides the order of G.

Proof We already know from the last section that the group G is partitioned into
the right cosets of H. We show that every right coset Hg contains the same number
of elements as H.

To prove this, we construct a bijection φ from H to Hg. The bijection is
defined in the obvious way: φ maps h to hg.

• φ is one-to-one: suppose that φ(h1) = φ)h2, that is, h1g = h2g. Cancelling
the g (by the cancellation law, or by multiplying by g−1), we get h1 = h2.

• φ is onto: by definition, every element in the coset Hg has the form hg for
some h ∈ H, that is, it is φ(h).

So φ is a bijection, and |Hg|= |H|.
Now, if m is the number of right cosets of H in G, then m|H| = |G|, so |H|

divides |G|.
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Remark We see that |G|/|H| is the number of right cosets of H in G. This
number is called the index of H in G.

We could have used left cosets instead, and we see that |G|/|H| is also the
number of left cosets. So these numbers are the same. In fact, there is another
reason for this:

Exercise Show that the set of all inverses of the elements in the right coset Hg
form the left coset g−1H. So there is a bijection between the set of right cosets
and the set of left cosets of H.

In the example in the preceding section, we had a group S3 with a subgroup
having three right cosets and three left cosets; that is, a subgroup with index 3.

Corollary 3.16 let g be an element of the finite group G. Then the order of g
divides the order of G.

Proof Remember, first, that the word “order” here has two quite different mean-
ings: the order of a group is the number of elements it has; while the order of an
element is the smallest n such that gn = 1.

However, we also saw that if the element g has order m, then the set {1,g,g2, . . . ,gm−1}
is a cyclic subgroup of G having order m. So, by Lagrange’s Theorem, m divides
the order of G.

Example Let G = S3. Then the order of G is 6. The element (1)(2,3) has
order 2, while the element (1,3,2) has order 3.

3.3 Homomorphisms and normal subgroups
This section is similar to the corresponding one for rings. Homomorphisms are
maps preserving the structure, while normal subgroups do the same job for groups
as ideals do for rings: that is, they are kernels of homomorphisms. The structure
of this section follows closely that of Section 2.3.

3.3.1 Isomorphism
Just as for rings, we say that groups are isomorphic if there is a bijection between
them which preserves the algebraic structure.

Formally, let G1 and G2 be groups. The map θ : G1 → G2 is an isomorphism
if it is a bijection from G1 to G2 and satisfies

(gh)θ = (gθ)(hθ) for all g,h ∈ G1.
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Note that, as before, we write the map θ to the right of its argument: that is, gθ

is the image of g under the map θ . If there is an isomorphism from G1 to G2, we
say that the groups G1 and G1 are isomorphic.

Example Let G1 be the additive group of Z/2Z, and let G2 be the symmetric
group S2. Their Cayley tables are:

+ 0̄ 1̄
0̄ 0̄ 1̄
1̄ 1̄ 0̄

· 1 (1,2)
1 1 (1,2)

(1,2) (1,2) 1

The map θ that takes 0̄ to 1, and 1̄ to (1,2), is clearly an isomorphism from G1 to
G2.

3.3.2 Homomorphisms
An isomorphism between groups has two properties: it is a bijection; and it pre-
serves the group operation. If we relax the first property but keep the second, we
obtain a homomorphism. Just as for rings, we say that a function θ : G1 → G2 is

• a homomorphism if it satisfies

(gh)θ = (gθ)(hθ); (3.1)

• a monomorphism if it satisfies (3.1) and is one-to-one;

• an epimorphism if it satisfies (3.1) and is onto;

• an isomorphism if it satisfies (3.1) and is one-to-one and onto.

We have the following lemma, proved in much the same way as for rings:

Lemma 3.17 Let θ : G1 → G2 be a homomorphism. Then 1θ = 1; (g−1)θ =
(gθ)−1; and (gh−1)θ = (gθ)(hθ)−1, for all g,h ∈ G1.

Now, if θ : G1 → G2 is a homomorphism, we define the image of θ to be the
subset

{x ∈ G2 : x = gθ for some g ∈ G1}

of G2, and the kernel of θ to be the subset

{g ∈ G1 : gθ = 1}

of G1.
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Proposition 3.18 Let θ : G1 → G2 be a homomorphism.

(a) Im(θ) is a subgroup of G2.

(b) Ker(θ) is a subgroup of G1.

Proof We use the Second Subgroup Test in each case.
(a) Take x,y ∈ Im(θ), say x = gθ and y = hθ for g,h ∈ G1. Then xy−1 =

(gh−1)θ ∈ Im(θ), by the Lemma.
(b) Take g,h∈Ker(θ). Then gθ = hθ = 1, so (gh−1)θ = 1−11 = 1; so gh−1 ∈

Ker(θ).

Example Look back to the Cayley table of the symmetric group S3 in Chapter 7.
Colour the elements 1, (1,2,3) and (1,3,2) red, and the elements (1,2), (2,3) and
(1,3) blue. We see that the Cayley table has the “simplified form”

· red blue
red red blue
blue blue red

This is a group of order 2, and the map θ taking 1, (1,2,3) and (1,3,2) to red
and (1,2), (2,3) and (1,3) to blue is a homomorphism. Its kernel is the subgroup
{1,(1,2,3),(1,3,2)}.

3.3.3 Normal subgroups
A normal subgroup is a special kind of subgroup of a group. Recall from the last
chapter taht any subgroup H has right and left cosets, which may not be the same.
We say that H is a normal subgroup of G if the right and left cosets of H in G are
the same; that is, if Hx = xH for any x ∈ G.

There are several equivalent ways of saying the same thing. We define

x−1Hx = {x−1hx : h ∈ H}

for any element x ∈ G.

Proposition 3.19 Let H be a subgroup of G. Then the following are equivalent:

(a) H is a normal subgroup, that is, Hx = xH for all x ∈ G;

(b) x−1Hx = H for all x ∈ G;

(c) x−1hx ∈ H, for all x ∈ G and h ∈ H.
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Proof If Hx = xH, then x−1Hx = x−1xH = H, and conversely. So (a) and (b) are
equivalent.

If (b) holds then every element x−1hx belongs to x−1Hx, and so to H, so (c)
holds. Conversely, suppose that (c) holds. Then every element of x−1Hx belongs
to H, and we have to prove the reverse inclusion. So take h ∈ H. Putting y = x−1,
we have k = y−1hy = xhx−1 ∈ H, so h ∈ x−1Hx, finishing the proof.

Now the important thing about normal subgroups is that, like ideals, they are
kernels of homomorphisms.

Proposition 3.20 Let θ : G1 →G2 be a homomorphism. Then Ker(θ) is a normal
subgroup of G1.

Proof Let H = Ker(θ). Suppose that h ∈ H and x ∈ G. Then

(x−1hx)θ = (x−1)θ ·hθ · xθ = (xθ)−1 ·1 · xθ = 1,

so x−1hx ∈ ker(θ) = H. By part (c) of the preceding Proposition, H is a normal
subgroup of G.

There are a couple of situations in which we can guarantee that a subgroup is
normal.

Proposition 3.21 (a) If G is Abelian, then every subgroup H of G is normal.

(b) If H has index 2 in G, then H is normal in G.

Proof (a) If G is Abelian, then xH = Hx for all x ∈ G.
(b) Recall that this means that H has exactly two cosets (left or right) in G.

One of these cosets is H itself; the other must consist of all the other elements of
G, that is, G \H. This is the case whether we are looking at left or right cosets.
So the left and right cosets are the same.

Remark We saw in the last chapter an example of a group S3 with a non-normal
subgroup having index 3 (that is, just three cosets). So we can’t improve this
theorem from 2 to 3.

In our example in the last section, the subgroup {1,(1,2,3),(1,3,2)} of S3 has
index 2, and so is normal, in S3; this also follows from the fact that it is the kernel
of a homomorphism.

For the record, here is a normal subgroup test:

Proposition 3.22 (Normal subgroup test) A non-empty subset H of a group G is
a normal subgroup of G if the following hold:



3.3. HOMOMORPHISMS AND NORMAL SUBGROUPS 75

(a) for any h,k ∈ H, we have hk−1 ∈ H;

(b) for any h ∈ H and x ∈ G, we have x−1hx ∈ H.

Proof (a) is the condition of the Second Subgroup Test, and we saw that (b) is a
condition for a subgroup to be normal.

3.3.4 Quotient groups
Let H be a normal subgroup of a group G. We define the quotient group G/H as
follows:

• The elements of G/H are the cosets of H in G (left or right doesn’t matter,
since H is normal);

• The group operation is defined by (Hx)(hy) = Hxy for all x,y ∈ G; in other
words, to multiply cosets, we multiply their representatives.

Proposition 3.23 If H is a normal subgroup of G, then the quotient group G/H
as defined above is a group. Moreover, the map θ from G to G/H defined by
xθ = Hx is a homomorphism whose kernel is H and whose image is G/H.

Proof First we have to show that the definition of the group operation is a good
one. In other words, suppose that we chose different coset representatives x′ and
y′ for the cosets Hx and Hy; is it true that Hxy = Hx′y′? We have x′ = hx and
y′ = ky, for some h,k ∈ H. Now xk belongs to the left coset xH. Since H is
normal, this is equal to the right coset Hx, so that xk = lx for some l ∈ H. Then
x′y′ = hxky = (hl)(xy) ∈ Hxy, since hl ∈ H. Thus the operation is indeed well-
defined.

Now we have to verify the group axioms.

(G0) Closure is clear since the product of two cosets is a coset.

(G1) Given three cosets Hx,Hy,Hz, we have

((Hx)(Hy))(Hz)= (Hxy)(Hz)= H(xy)z = Hx(yz)= (Hx)(Hyz)= (Hx)((Hy)(Hz)),

using the associative law in G.

(G2) The identity is H1 = H, since (H1)(Hx) = H(1x) = Hx for all x ∈ G.

(G3) The inverse of Hx is clearly Hx−1.
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Finally, for the map θ , we have

(xy)θ = Hxy = (Hx)(Hy) = (xθ)(yθ),

so θ is a homomorphims. Its image consists of all cosets Hx, that is, Im(θ) =
G/H. The identity element of G/H is (as we saw in in the proof of (G2)) the
coset H; and Hx = H if and only if x ∈ H, so that Ker(θ) = H.

The map θ in the above proof is called the natural homomorphism from G to
G/H. We see that, if H is a normal subgroup of G, then it is the kernel of the
natural homomorphism from G to G/H. So normal subgroups are the same thing
as kernels of homomorphisms.

Example Let G = S3, and let H be the subgroup {1,(1,2,3),(1,3,2)}. We have
observed that H is a normal subgroup. It has two cosets, namely H1 = H and
H(1,2) = {(1,2),(2,3),(1,3)}. The rules for multiplication of these cosets will
be the same as the rules for multiplying the elements 1 and (1,2). So G/H is
isomorphic to the group {1,(1,2)} of order 2.

3.3.5 The Isomorphism Theorems
The Isomorphism Theorems for groups look just like the versions for rings.

Theorem 3.24 (First Isomorphism Theorem) Let G1 and G2 be groups, and let
θ : G1 → G2 be a homomorphism. Then

(a) Im(θ) is a subgroup of G2;

(b) Ker(θ) is a normal subgroup of G1;

(c) G1/Ker(θ)∼= Im(θ).

Proof We already proved the first two parts of this theorem. We have to prove (c).
That is, we have to construct a bijection φ from G/N to Im(θ), where N = Ker(θ),
and prove that it preserves the group operation.

The map φ is defined by (Nx)φ = xθ . We have

(Nx)φ = (Ny)φ ⇔ xθ = yθ ⇔ (xy−1)θ = 1⇔ xy−1 ∈ Ker(θ) = N ⇔ Nx = Ny,

so φ is well-defined and one-to-one. It is clearly onto. Finally,

(Nx)φ · (Ny)φ = (xθ)(yθ) = (xy)θ = (Nxy)φ = ((Nx)(Ny))φ ,

so φ preserves the group operation as required.
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The same picture as for rings may be useful:
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The parts on the left are the cosets of N = Ker(θ), where N itself is the topmost
part. Each coset of N maps to a single element of Im(θ), and the correspondence
between cosets and elements of Im(θ) is the bijection of the last part of the theo-
rem.

The other two theorems will be stated without proof. You are encouraged to
try the proofs for yourself; they are very similar to the proofs for rings.

Theorem 3.25 (Second Isomorphism Theorem) Let N be a normal subgroup of
the group G. Then there is a one-to-one correspondence between the subgroups of
G/N and the subgroups of G containing N, given as follows: to a subgroup H of G
containing N corresponds the subgroup H/N of G/N. Under this correspondence,
normal subgroups of G/N correspond to normal subgroups of G containing N;
and, if M is a normal subgroup of G containing N, then

(G/N)/(M/N)∼= G/M.

For the next theorem we need to define, for any two subsets A,B of a group G,
the set

AB = {ab : a ∈ A,b ∈ B}
of all products of an element of A by an element of B.

Theorem 3.26 (Third Isomorphism Theorem) Let G be a group, H a subgroup
of G, and N a normal subgroup of G. Then

(a) HN is a subgroup of G containing N;

(b) H ∩N is an normal subgroup of H;

(c) H/(H ∩N)∼= (HN)/N.

We end this section with one fact about groups which doesn’t have an obvious
analogue for rings.
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Proposition 3.27 Let H and K be subgroups of the group G.

(a) HK is a subgroup of G if and only if HK = KH.

(b) If K is a normal subgroup of G, then HK = KH.

Proof (a) Suppose that HK = KH. Then every element of the form kh (for k ∈
K and h ∈ H) can also be expressed in the form h′k′ (for h′ ∈ H and k′ ∈ K).
Now we apply the subgroup test to HK. Take h1k1,h2k2 ∈ HK. We want to
know if h1k1(h2k2)−1 ∈ HK. This expression is h1k1k−1

2 h−1
2 . Now k1k−1

2 ∈ K,
so (k1k−1

2 )h−1
2 ∈ KH; so we can write this element as h′k′, for some h′ ∈ H and

k′ ∈ K. Then
h1k1k−1

2 h−1
2 = (h1h′)k′ ∈ HK,

as required.
Conversely, suppose that HK is a subgroup. We have to show that HK = KH,

that is, every element of one is in the other. Take any element x ∈ HK. Then
x−1 ∈ HK, so x−1 = hk, for some h ∈ H and k ∈ K. Then x = k−1h−1 ∈ KH. The
reverse inclusion is proved similarly.

(b) If K is a normal subgroup, then the Third Isomorphism Theorem shows
that HK is a subgroup, so that HK = KH by Part (a).

Exercise If H and K are subgroups of G, show that

|HK|= |H| · |K|
|H ∩K|

,

whether or not HK is a subgroup. [Hint: there are |H|·|K| choices of an expression
hk. Show that every element in HK can be expressed as such a product in |H ∩K
different ways.]

Example Let G = S3, H = {1,(1,2)} and K = {1,(2,3)}. Then H and K are
two subgroups of G, each of order 2, and H ∩K = {1}, so |HK| = 4. Since 4
doesn’t divide 6, Lagrange’s Theorem shows that HK cannot be a subgroup of G.
This shows, once again, that H and K are not normal subgroups of G.

3.3.6 Conjugacy
Conjugacy is another equivalence relation on a group which is related to the idea
of normal subgroups.

Let G be a group, we say that two elements g,h∈G are conjugate if h = x−1gx
for some element x ∈ G.
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Proposition 3.28 (a) Conjugacy is an equivalence relation on G.

(b) A subgroup H of G is normal if and only if it is a union of (some of the)
conjugacy classes in G.

Proof (a) Write g∼ h to mean that h = x−1gx for some x ∈ G. Then

• g = 1−1g1, so g∼ g: ∼ is reflexive.

• If h = x−1gx, then g = (x−1)−1h(x−1): so ∼ is symmetric.

• Suppose that g∼ h and h∼ k. Then h = x−1gx and k = y−1hy for some x,y.
Then k = y−1x−1gxy = (xy)−1g(xy), so g∼ k: ∼ is transitive.

(b) The condition that H is a union of conjugacy classes means that, if h ∈ H,
then any element conjugate to h is also in H. We saw in Proposition 3.19 that this
condition is equivalent to normality of H.

Exercise Let G = S3. Show that the conjugacy classes in G are {1}, {(1,2,3),(1,3,2)},
and {(1,2),(2,3),(1,3)}. (We will look at conjugacy in symmetric groups in the
next section.)

3.4 Symmetric groups and Cayley’s Theorem
Cayley’s Theorem is one of the reasons why the symmetric groups form such
an important class of groups: in a sense, if we understand the symmetric groups
completely, then we understand all groups!

Theorem 3.29 Every group is isomorphic to a subgroup of some symmetric group.

Before we give the proof, here is a small digression on the background. Group
theory began in the late 18th century: Lagrange, for example, proved his theorem
in 1770. Probably the first person to write down the axioms for a group in anything
like the present form was Dyck in 1882. So what exactly were group theorists
doing for a hundred years?

The answer is that Lagrange, Galois, etc. regarded a group as a set G of per-
mutations with the properties

• G is closed under composition;

• G contains the identity permutation;

• G contains the inverse of each of its elements.

In other words, G is a subgroup of the symmetric group.



80 CHAPTER 3. GROUPS

Thus, Cayley’s contribution was to show that
every group (in the modern sense) could be
regarded as a group of permutations; that is,
every structure which satisfies the group
axioms can indeed be thought of as a group
in the sense that Lagrange and others would
have understood.
In general, systems of axioms in
mathematics are usually not invented out of
the blue, but are an attempt to capture some
theory which already exists.

3.4.1 Proof of Cayley’s Theorem
We begin with an example. Here is the Cayley table of a group we have met
earlier: it is C2×C2, or the additive group of the field of four elements. When
we saw it in Chapter 7, its elements were called e,a,b,c; now I will call them
g1,g2,g3,g4.

· g1 g2 g3 g4
g1 g1 g2 g3 g4
g2 g2 g1 g4 g3
g3 g3 g4 g1 g2
g4 g4 g3 g2 g1

Now consider the four columns of this table. In each column, we see the four
group elements g1, . . . ,g4, each occurring once; so their subscripts form a permu-
tation of {1,2,3,4}. Let πi be the permutation which is given by the ith column.

For example, for i = 3, the elements of the column are (g3,g4,g1,g2), and so

π3 is the permutation which is
(

1 2 3 4
3 4 1 2

)
in two-line notation, or (1,3)(2,4)

in cycle notation.
The four permutations which arise in this way are:

π1 = 1
π2 = (1,2)(3,4)
π3 = (1,3)(2,4)
π4 = (1,4)(2,3)

Now we claim that {π1,π2,π3,π4} is a subgroup H of the symmetric group
S4, and that the map θ defined by giθ = πi is an isomorphism from G to H. (This
means that, if gig j = gk, then πiπ j = πk, where permutations are composed in the
usual way.) This can be verified with a small amount of checking.
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You might think that it would be easier to use rows instead of columns in this
argument. In the case of an Abelian group, like the one in this example, of course
it makes no difference since the Cayley table is symmetric; but for non-Abelian
groups, the statement would not be correct for rows.

So now we come to a more precise statement of Cayley’s Theorem. We assume
here that the group is finite; but the argument works just as well for infinite groups
too.

Theorem 3.30 (Cayley’s Theorem) Let G = {g1, . . . ,gn} be a finite group. For
j ∈ {1, . . . ,n}, let π j be the function from {1, . . . ,n} to itself defined by the rule

iπ j = k if and only if gig j = gk.

Then

(a) π j is a permutation of {1, . . . ,n};

(b) the set H = {π1, . . . ,πn} is a subgroup of Sn;

(c) the map θ : G→ Sn given by g jθ = π j is a homomorphism with kernel {1}
and image H;

(d) G is isomorphic to H.

Proof (a) To show that π j is a permutation, it is enough to show that it is one-
to-one, since a one-to-one function on a finite set is onto. (For infinite groups,
we would also have to prove that it is onto.) So suppose that i1π j = i2π j = k.
This means, by definition, that gi1g j = gi2g j = gk. Then by the cancellation law,
gi1 = gi2 = gkg−1

j , and so i1 = i2.
(c) Clearly the image of θ is H. So if we can show that θ is a homomorphism,

the fact that H is a subgroup of Sn will follow.
Suppose that g jgk = gl . We have to show that π jπk = πl , in other words (since

these are functions) that (iπ j)πk = iπl for any i∈{1, . . . ,n}. Define numbers p,q,r
by gig j = gp, gpgk = gq, and gigl = gr. Then iπ j = p, pπk = q (so iπ jπk = q), and
iπl = r. So we have to prove that q = r. But

gq = gpgk = (gig j)gk = gi(g jgk) = gigl = gr,

so q = r.
Now the kernel of θ is the set of elements g j for which π j is the identity

permutation. Suppose that g j ∈ Ker(θ). Then iπ j = i for any i ∈ {1, . . . ,n}. This
means that gig j = gi, so (by the cancellation law) g j is the identity. So Ker(θ) =
{1}.
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Now the First Isomorphism Theorem shows that H = Im(θ) is a subgroup of
Sn (that is, (b) holds), and that

G∼= G/{1}= G/Ker(θ)∼= H,

that is, (d) holds. So we are done.

Remark There may be other ways to find a subgroup of Sn isomorphic to the
given group G. For example, consider the group G = S3, a non-abelian group
of order 6, whose Cayley table we wrote down in Chapter 7. From this table,
you could find a set of six permutations in the symmetric group S6 which form a
subgroup of S6 isomorphic to G. But G is already a subgroup of S3!

3.4.2 Conjugacy in symmetric groups
We finish this chapter with two more topics involving symmetric groups. First,
how do we tell whether two elements of Sn are conjugate?

We define the cycle structure of a permutation g ∈ Sn to be the list of cycle
lengths of g when it is expressed in cycle notation. (We include all cycles includ-
ing those of length 1.) The order of the terms in the list is not important. Thus, for
example, the permutation (1,7)(2,6,5)(3,8,4) has cycle structure [2,3,3].

Proposition 3.31 Two permutations in Sn are conjugate in Sn if and only if they
have the same cycle structure.

Proof Suppose that (a1,a2, . . . ,ar) is a cycle of a permutation g. This means that
g maps

a1 7→ a2 7→ . . . 7→ ar 7→ a1.

We claim that h = x−1gx maps

a1x 7→ a2x 7→ . . . 7→ arx 7→ a1x,

so that it has a cycle (a1,a2, . . . ,ar). This is true because

(aix)h = (aix)(x−1gx) = aigx = ai+1x

for i = 1, . . . ,r−1, and (arx)h = a1x.
This shows that conjugate elements have the same cycle structure. The recipe

is: given g in cycle notation, replace each element ai in each cycle by its image
under x to obtain x−1gx in cycle notation.

Conversely, suppose that g and h have the same cycle structure. We can write h
under g so that cycles correspond. Then the permutation x which takes each point
in a cycle of g to the corresponding point in a cycle of h is the one we require,
satisfying h = x−1gx, to show that g and h are conjugate.
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Example The permutations g =(1,7)(2,6,5)(3,8,4) and h =(2,3)(1,5,4)(6,8,7)

are conjugate. We can take x to be the permutation given by
(

1 7 2 6 5 3 8 4
2 3 1 5 4 6 8 7

)
in two-line notation, or (1,2)(3,6,5,4,7)(8) in cycle notation.

3.4.3 The alternating groups
You have probably met the sign of a permutation in linear algebra; it is used in the
formula for the determinant. It is important in group theory too.

Let g be an element of Sn, which has k cycles when written in cycle notation
(including cycles of length 1). We define its sign to be (−1)n−k.

Note that the sign depends only on the cycle structure; so conjugate permuta-
tions have the same sign.

Theorem 3.32 The function sgn is a homomorphism from the symmetric group Sn
to the multiplicative group {+1,−1}. For n ≥ 2, it is onto; so its kernel (the set
of permutations of {1, . . . ,n} with sign +) is a normal subgroup of index 2 in Sn,
called the alternating group An.

Example For n = 3, the permutations with sign +1 are 1, (1,2,3) and (1,3,2),
while those with sign −1 are (1,2), (2,3) and (1,3). We have seen that the first
three form a normal subgroup.

Proof We define a transposition to be a permutation of {1, . . . ,n} which inter-
changes two points i and j and fixes all the rest. Now a transposition has cycle
structure [2,1,1, . . . ,1], and so has n−1 cycles; so its sign is (−1)1 =−1.

We show the following two facts:

(a) Every permutation can be written as the product of transpositions.

(b) If t is a transposition and g any permutation, then sgn(gt) =−sgn(g).

Now the homomorphism property follows. For take any g,h ∈ Sn. Write h =
t1t2 . . . tr, where t1, . . . , tr are transpositions. Then applying (b) r times, we see that
sgn(gh) = sgn(g)(−1)r. But also sgn(h) = (−1)r (using the identity instead of g),
so sgn(gh) = sgn(g)sgn(h). Thus sgn is a homomorphism. Since sgn(1,2) =−1,
we see that Im(sgn) = {+1,−1}. So, if An denotes Ker(sgn), the First Isomor-
phism Theorem shows that Sn/An ∼= {±1}, so that An has two cosets in Sn (that is,
index 2).

Proof of (a): Take any permutation g, and write it in cycle notation, as a prod-
uct of disjoint cycles. It is enough to show that each cycle can be written as a
product of transpositions. Check that

(a1,a2, . . . ,ar) = (a1,a2)(a1,a3) · · ·(a1,ar).
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Proof of (b): Again, write g in cycle notation. Now check that, if t interchanges
points in different cycles of g, then in the product gt these two cycles are “stitched
together” into a single cycle; while, if t interchanges points in the same g-cycle,
then this cycle splits into two in gt. For example,

(1,3,5,7)(2,4,6) · (3,4) = (1,4,6,2,3,5,7),
(1,2,5,3,8,6,4,7) · (3,4) = (1,2,5,4,7)(3,8,6).

So multiplying g by a transposition changes the number of cycles by one (either
increases or decreases), and so multiplies the sign by −1.

The proof shows another interesting fact about permutations. As we saw, every
permutation can be written as a product of transpositions.

Corollary 3.33 Given any two expressions of g ∈ Sn as a product of transposi-
tions, the numbers of transpositions used have the same parity, which is even if
sgn(g) = +1 and odd if sgn(g) =−1.

Proof We saw that if g is the product of r transpositions, then sgn(g) = (−1)r.
This must be the same for any other expression for g as a product of transpositions.

Example (1,2) = (1,3)(2,3)(1,3); one expression uses one transposition, the
other uses three.

3.5 Some special groups
In the final section we make the acquaintance of some further types of groups, and
investigate more closely the groups S4 and S5.

3.5.1 Normal subgroups of S4 and S5

In this section, we find all the normal subgroups of the groups S4 and S5. There
are two possible approaches we could take. We could find all the subgroups and
check which ones on our list are normal. But, for example, S5 has 156 subgroups,
so this would be quite a big job! The approach we will take is based on the fact
that a subgroup of G is normal if and only if it is a union of conjugacy classes.
So we find the conjugacy classes in each of these groups, and then figure out how
to glue some of them together to form a subgroup (which will automatically be
normal).
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Recall from the last chapter that two permutations in Sn are conjugate if and
only if they have the same cycle structure. So first we list the possible cycle struc-
tures and count the permutations with each structure. For S4, we get the following
table. (We list the sign in the last column; we know that all the permutations with
sign +1 must form a normal subgroup. The sign is of course (−1)n−k, where k is
the number of cycles.)

Cycle structure Number Sign
[1,1,1,1] 1 +
[2,1,1] 6 −
[2,2] 3 +
[3,1] 8 +
[4] 6 −

Total 24

How do we compute these numbers? There is a general formula for the num-
ber of permutations with given cycle structure. If you want to use it to check, here
it is. Suppose that the cycle structure is [a1,a2, . . . ,ar], and suppose that in this list
the number 1 occurs m1 times, the number 2 occurs m2 times, and so on. Then the
number of permutations with this cycle structure is

n!
1m1m1!2m2m2! · · ·

.

So for example, for the cycle structure [2,2], we have two 2s and nothing else, so
m2 = 2, and the number of permutations with cycle structure [2,2] is 4!/(22 2!) =
3.

In small cases we can argue directly. There is only one permutation with
cycle structure [1,1,1,1], namely the identity. Cycle structure [2,1,1] describes
transpositions, and there are six of these (the number of choices of the two points
to be transposed). For cycle structure [2,2] we observe that the six transpositions
fall into three complementary pairs, so there are three such elements. For [3,1],
there are four choices of which point is fixed, and two choices of a 3-cycle on the
remaining points. Finally, for [4], a 4-cycle can start at any point, so we might
as well assume that the first point is 1. Then there are 3! = 6 ways to put the
remaining points into a bracket (1, , , ) to make a cycle.

Having produced this table, how can we pick some of the conjugacy classes to
form a subgroup? We know that a subgroup must contain the identity, so the first
class must be included. Also, by Lagrange’s Theorem, the order of any subgroup
must divide the order of the group. So, unless we take all five classes, we cannot
include a class of size 6. (For then the order of the subgroup would be at least 7, so
necessarily 8 or 12, and we cannot make up 1 or 5 elements out of the remaining
classes.) So the only possibilities are:



86 CHAPTER 3. GROUPS

• Take just the class {1}. This gives the trivial subgroup, which is certainly
normal.

• Take {1} together with the class [2,2], giving four elements. We have to
look further at this.

• Take {1} together with the classes [2,2] and [1,3]. These are all the even
permutations, so do form a normal subgroup, namely the alternating group
A4.

• Take all five classes. This gives the whole of S4, which is a normal subgroup
of itself.

The one case still in doubt is the possibility that the set

V4 = {1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}

is a normal subgroup. Of course, if it is a subgroup, then it is normal, since it
consists of two conjugacy classes. And it is a subgroup; our example of Cayley’s
Theorem produced precisely this subgroup! It is called V from the German word
vier, meaning “four”; it is sometimes referred to as the “four-group”.

We have proved:

Proposition 3.34 The group S4 has four normal subgroups. These are the iden-
tity, the four-group V4, the alternating group A4, and the symmetric group S4.

What about the factor groups? Clearly S4/{1} ∼= S4, while S4/S4 ∼= {1}. We
know that S4/A4 is isomorphic to the multiplicative group {±1}, which is a cyclic
group of order 2. One case remains:

Proposition 3.35 S4/V4 ∼= S3.

Proof There are many ways to see this. Here is the simplest.
Consider the subgroup S3 of S4 consisting of all permutations fixing the point

4. We have |S3|= 6, |V4|= 4, and S3∩V4 = {1} (by inspection of the elements of
V4), so |S3V4|= 24; that is, S3V4 = S4. Now, by the Third Isomorphism Theorem,

S4/V4 = S3V4/V4 ∼= S3/(S3∩V4) = S3/{1}= S3.

We now look at S5 and show:

Proposition 3.36 The group S5 has three normal subgroups: the identity, the al-
ternating group A5, and the symmetric group S5.
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We will be more brief here. The table of conjugacy classes looks like this:

Cycle structure Number Sign
[1,1,1,1,1] 1 +
[2,1,1,1] 10 −
[2,2,1] 15 +
[3,1,1] 20 +
[3,2] 20 −
[4,1] 30 −
[5] 24 +

Total 120

Number these classes as C1, . . . ,C7 in order. We have to choose some of them
including C1 such that the sum of the numbers is a divisor of 120. All classes
except C1 and C7 have size divisible by 5; so if we don’t include C7 then the total
divides 24, which is easily seen to be impossible. So we must have C7. Now,
since we are trying to build a subgroup, it must be closed under composition; so
any cycle type which can be obtained by multiplying together two 5-cycles has to
be included. Since

(1,2,3,4,5)(1,5,4,2,3) = (1,3,2),
(1,2,3,4,5)(1,2,3,5,4) = (1,3)(2,5),

both classes C3 and C4 must be included. Now C1∪C3∪C4∪C7 is the alternating
group A5, and if there is anything else, we must have the entire symmetric group.

3.5.2 Dihedral groups
One important source of groups is as symmetries of geometric figures. Here is
an example. Consider a square, as shown in the figure. (We have marked various
axes of symmetry as dotted lines.)
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Now the square has eight symmetries, four rotations and four reflections. They
are given in the table, together with their effect as permutations of the four vertices
of the square. The rotations are taken clockwise.
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Symmetry Permutation
Identity 1

Rotation through 90◦ about O (1,2,3,4)
Rotation through 180◦ about O (1,3)(2,4)
Rotation through 270◦ about O (1,4,3,2)

Reflection about AC (1,2)(3,4)
Reflection about BD (1,4)(2,3)
Reflection about 13 (2,4)
Reflection about 24 (1,3)

The eight symmetries form a group (with the operation of composition). The
corresponding permutations form a group, a subgroup of the symmetric group
S4, which is isomorphic to the group of symmetries. This group is non-Abelian.
(This can be seen by composing symmetries, or by composing permutations. For
example, (1,2,3,4)(1,3) = (1,2)(3,4), while (1,3)(1,2,3,4) = (1,4)(2,3).)

More generally, a regular n-gon has 2n symmetries, n rotations and n reflec-
tions, forming a group which is known as the dihedral group D2n. (Thus the group
in the table above is D8. You should be warned that some people refer to what I
have called D2n as simply Dn.)

Here are some properties of dihedral groups, which should be clear from the
figure.

• The n rotations form a cyclic subgroup Cn of D2n. (This subgroup has in-
dex 2 in D2n, so it is a normal subgroup.)

• If n is odd, then every reflection axis joins a vertex to the midpoint of the op-
posite side; while if n is even, then n/2 axes join the midpoints of opposite
sides and n/2 join opposite vertices.

• Any reflection has order 2.

• If a is a rotation and b a reflection, then bab = a−1.

The last condition says: reflect the figure, rotate it clockwise, and then reflect
again; the result is an anticlockwise rotation. This gives another proof that the
rotations form a normal subgroup. For let a be a rotation, and x any element. If x
is a rotation, then ax = xa, so x−1ax = a. If x is a reflection, then x−1 = x, and so
x−1ax = a−1. So any conjugate of a rotation is a rotation.

The definition of D4 is not clear, since there is no regular 2-gon. But if we take
the pattern in D2n and apply it for n = 2, we would expect a group with a cyclic
subgroup of order 2, and all elements outside this subgroup having order 2. This
is a description of the four-group.
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Moreover, D6 is the group of symmetries of an equilateral triangle, and the six
permutations of the vertices comprise all possible permutations.

So the following is true.

Proposition 3.37 (a) The dihedral group D4 is isomorphic to the four-group
V4.

(b) The dihedral group D6 is isomorphic to the symmetric group S3.

3.5.3 Small groups
How many different groups of order n are there? (Here, “different” means “non-
isomorphic”.) This is a hard question, and the answer is not known in general: it
was only six years ago that the number of groups of order 1024 was computed:
the number is 49,487,365,422. (The result of this computation was announced at
Queen Mary.)

We will not be so ambitious. For small n, the number of groups of order n is
given in this table. We will verify the table up to n = 7.

Order 1 2 3 4 5 6 7 8
Number of groups 1 1 1 2 1 2 1 5

Clearly there is only one group of order 1. The result for n = 2,3,5,7 follows
from the next Proposition.

Proposition 3.38 A group of prime order p is isomorphic to the cyclic group Cp.

Proof Take an element g of such a group G, other than the identity. By La-
grange’s Theorem, the order of g must divide p, and so the order must be 1 or p
(since p is prime). But g 6= 1, so its order is not 1; thus it is p. So G is a cyclic
group generated by g.

Next we show that there are just two groups of order 4. We know two such
groups already: the cyclic group C4, and the four-group V4. (See the Cayley tables
in 3.1.2 of the notes).

Let G be a group of order 4. Then the order of any element of G divides 4,
and so is 1, 2 or 4 by Lagrange’s Theorem. If there is an element of order 4, then
G is cyclic; so suppose not. Then we can take G = {1,a,b,c}, where a2 = b2 =
c2 = 1. What is ab? It cannot be 1, since ab = 1 = a2 would imply a = b by
the Cancellation Law. Similarly ab 6= a and ab 6= b, also by the Cancellation Law
(these would imply b = 1 or a = 1 respectively). So ab = c. Similarly, all the
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other products are determined: the product of any two non-identity elements is
the third. In other words, the Cayley table is

· 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

We recognise the Klein four-group. So there is just one such group (up to isomor-
phism), giving two altogether.

To deal with order 6, we need a couple of preliminary results.

Proposition 3.39 A group of even order must contain an element of order 2.

Proof Take any group G of order n, and attempt to pair up the elements of G with
their inverses. Suppose that we can form m pairs, accounting for 2m elements. The
elements we have failed to pair up are the ones which satisfy g = g−1, or g2 = 1;
these include the identity (one element) and all the elements of order 2. So there
must be n−2m−1 elements of order 2. If n is even, then n−2m−1 is odd, and
so cannot be zero; so there is an element of order 2 in G.

Proposition 3.40 A finite group in which every element has order 2 (apart from
the identity) is Abelian.

Proof Take any g,h ∈ G. We have

(gh)2 = ghgh = 1,

g2h2 = gghh = 1,

so by cancellation, hg = gh. Thus G is Abelian.

Now let G be a group of order 6. If G contains an element of order 6, then it
is cyclic; so suppose not. Now all its elements except the identity have order 2 or
3. The first proposition above shows that G contains an element a of order 2. The
second shows that it must also have an element of order 3. For, suppose not. Then
all non-identity elements of G have order 2. If g and g are two such elements,
then it is easy to see that {1,g,h,gh = hg} is a subgroup of order 4, contradicting
Lagrange’s Theorem.

So let a be an element of order 3 and an element b of order 2. The cyclic
subgroup 〈a〉= {1,a,a−1 = a2} of G has order 3 and index 2, so it is normal. So
b−1ab ∈ 〈a〉, whence b−1ab = a or b−1ab = a−1.
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If b−1ab = a, then ab = ba, so (ab)i = aibi for all i. Then the powers of ab are

(ab)2 = a2b2 = a2, (ab)3 = a3b3 = b, (ab)4 = a4b4 = a,

(ab)5 = a5b5 = a2b, (ab)6 = a6b6 = 1,

so the order of ab is 6, contradicting our case assumption. So we must have
b−1ab = a−1, or ba = a−1b = a2b.

Now using this, the Cayley table of G is completely determined: all the el-
ements have the form aib j, where i = 0,1,2 and j = 0,1; to multiply aib j by
akbl , we use the condition ba = a−1b to jump the first b over the as to its right if
necessary and the conditions a3 = b2 = 1 to reduce the exponents. For example,

a2b ·ab = a2(ba)b = a2(a2b)b = a4b2 = a.

So there is only one possible group of this type. Its Cayley table is:

· 1 a a2 b ab a2b
1 1 a a2 b ab a2b
a a a2 1 ab a2b b
a2 a2 1 a a2b b ab
b b a2b ab 1 a2 a

ab ab b a2b a 1 a2

a2b a2b ab b a2 a 1

These relations are satisfied in the group S3, if we take a = (1,2,3) and b =
(1,2). So there is such a group; and so there are two groups of order 6 altogether
(the other being the cyclic group). Alternatively, we could observe that the above
relations characterise the dihedral group D6, so the two groups are C6 and D6.

We see, incidentally, that S3 ∼= D6, and that this is the smallest non-Abelian
group.

3.5.4 Polyhedral groups
You have probably seen models of the five famous regular polyhedra: the tetra-
hedron, the cube (or hexahedron), the octahedron, the dodecahedron, and the
icosahedron. These beautiful figures have been known since antiquity. See Fig-
ures 3.1, 3.2.

What are their symmetry groups?
Here I will just consider the groups of rotations; the extra symmetries realised

by reflections in three-dimensional space make the situation a bit more compli-
cated. As in the case of the dihedral groups, these groups can be realised as
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Figure 3.1: Tetrahedron, cube, and octahedron
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Figure 3.2: Dodecahedron and Icosahedron

permutation groups, by numbering the vertices and reading off the permutation
induced by any symmetry.

Moreover, there are five figures, but only three groups. Apart from the tetra-
hedron, the figures fall into “dual pairs”: the figure whose vertices are the face
centres of a cube is an octahedron and vice versa, and a similar relation holds be-
tween the dodecahedron and the icosahedron. Dual pairs have the same symmetry
group. (The face centres of the tetrahedron are the vertices of another tetrahedron,
so this figure is “self-dual”.) The following result describes the three symmetry
groups.

Proposition 3.41 (a) The tetrahedral group is isomorphic to A4.

(b) The octahedral group is isomorphic to S4.

(c) The icosahedral group is isomorphic to A5.

Proof I will outline the proof. First we compute the orders of these groups. If
a figure has m faces, each a regular polygon with n sides, then the number of
rotational symmetries is mn. For imagine the figure with one face on the table. I
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can pick it up and rotate it so that any of the m faces is on the table, in any of the
n possible orientations. Now we have

• Tetrahedron: m = 4, n = 3, group order 12.

• Cube: m = 6, n = 4, group order 24.

• Octahedron: m = 8, n = 3, group order 24.

• Dodecahedron: m = 12, n = 5, group order 60.

• Icosahedron: m = 20, n = 3, group order 60.

We see that the symmetry groups of dual polyhedra have the same order, as they
should.

(a) Any symmetry of the tetrahedron permutes the four vertices. So the sym-
metry group is a subgroup of S4 of order 12. To see that it is A4, we simply have
to observe that every symmetry is an even permutation of the vertices. A rotation
about the line joining a vertex to the midpoint of the opposite face has cycle struc-
ture [3,1], while a rotation about the line joining the midpoints of opposite edges
has cycle structure [2,2]. (Alternatively, a subgroup of S4 of order 12 has index 2
and is therefore normal; and we have worked out the normal subgroups of S4. The
only one of order 12 is A4.)

(b) Consider the cube. It has four diagonals joining opposite vertices. Any
symmetry induces a permutation of the four diagonals. It is not hard to see that the
map from symmetries to permutations is one-to-one. So the group is isomorphic
to a subgroup of S4 of order 24, necessarily the whole of S4.

(c) This is the hardest to prove. But in fact it is possible to embed a cube so that
its vertices are eight of the 20 vertices of the dodecahedron in five different ways.
These five inscribed cubes are permuted by any rotation, so we have a subgroup
of S5 of order 60. This subgroup has index 2 and so is normal; so it must be A5.
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