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In the last chapter, as in most of this course, we treated power series as
formal objects: even differentiation involves no limiting processes. However,
if the coefficients are complex numbers, and the series converge in some neigh-
bourhood of the origin, then analytic methods can be used. These methods
can be very powerful. We will see them at work in the derivation of a for-
mula for the Catalan numbers, and then give a few examples of combinatorial
objects counted by Catalan numbers.

3.1 Analysis

A complex function which is analytic in some neighbourhood of the origin
is represented by a convergent power series in a disc about the origin. If
an analytic relation between functions holds in a suitable disc, then any
connection between the coefficients which can be derived will also be true in
the world of formal power series.

The most important formal power series to which this principle can be
applied are

(a) The binomial series (1 + x)a =
∑
n≥0

(
a

n

)
xn, where a is any complex

number, and the binomial coefficient is defined as(
a

n

)
=

a(a− 1) · · · (a− n + 1)

n!
.

(b) The exponential series exp(x) =
∑
n≥0

xn

n!
..
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(c) The logarithmic series log(1 + x) =
∑
n≥1

(−1)n−1xn

n
.

Here is a simple example. The identity

(1 + x)a(1 + x)b = (1 + x)a+b,

valid for |x| < 1, gives rise to the Vandermonde convolution

n∑
k=0

(
a

k

)(
b

n− k

)
=

(
a + b

n

)
.

3.2 Example: Catalan numbers

The Catalan numbers are one of the most important sequences of combi-
natorial numbers, with a large range of occurrences in apparently different
counting problems. I will introduce them with one particular occurrence, and
then give a number of different places where they arise. The derivation of
the formula for them is on the border between formal and analytic methods,
and multivariate versions of this method are useful in areas such as lattice
path problems.

Problem Given an algebraic structure with a (non-associative) binary op-
eration ◦, in how many different ways can a product of n terms be evaluated
by inserting brackets?

For example, the product a ◦ b ◦ c ◦ d has five evaluations:

((a ◦ b) ◦ c) ◦ d, (a ◦ (b ◦ c)) ◦ d, (a ◦ b) ◦ (c ◦ d), a ◦ ((b ◦ c) ◦ d), a ◦ (b ◦ (c ◦ d)).

Let Cn be the number of evaluations of a product of n terms, for n ≥ 1,

so that C1 = C2 = 1, C3 = 2, C4 = 5. Let c(x) =
∑
n≥1

Cnx
n be the generating

function.
In a bracketing of n terms, the last application of ◦ will combine some

product of the first m terms with some product of the last n−m terms, for
some m with 1 ≤ m ≤ n− 1. So we have the recurrence relation

Cn =
n−1∑
m=1

CmCn−m for n > 1.
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Combined with the initial condition C1 = 1, this determines the sequence.
Now consider the product c(x)2. The recurrence relation shows that the

terms in xn in c(x)2 are the same as those in c(x) for n > 1; only the terms
in x differ, with c(x) containing 1x and c(x)2 containing 0x. So we have

c(x) = x + c(x)2.

We can rearrange this as a quadratic equation:

c(x)2 − c(x) + x = 0.

The solution of this equation is

c(x) = 1
2

(
1±
√

1− 4x
)
.

The choice of sign in the square root is determined by the fact that c(0) = 0,
so we must take the negative sign:

c(x) = 1
2

(
1−
√

1− 4x
)
.

From this expression it is possible to extract the coefficient of xn. Ac-
cording to the Binomial Theorem,

(1− 4x)1/2 =
∑
n≥0

(
1/2

n

)
(−4x)n,

and so

Cn = −1
2
(−4)n

(
1/2

n

)
.

Now (
1/2

n

)
=

(1/2)(−1/2) · · · (−(2n− 3)/2)

n!

=
1

2n
(−1)n−1 1 · 3 · (2n− 3)

n!

=
1

2n
(−1)n−1 1

n

(2n− 2)!

2n−1((n− 1)!)2

= −2(−1
4
)n 1

n

(
2n− 2

n− 1

)
,
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so finally we obtain

Cn =
1

n

(
2n− 2

n− 1

)
.

The result and its proof call for a few remarks.
First, are these manipulations really valid?

(a) We have used here the Binomial Theorem for exponent 1/2, which is
proved analytically by observing that the function (1+x)1/2 is analytic
in the interior of the unit disc (it has a branchpoint at x = −1), and
then using the formula for the coefficient of xn in the Taylor series
(differentiate n times, put x = 0, divide by n!).

(b) It is clear, from back substitution, that the function c(x) = 1
2
(1 −√

1− 4x) does indeed satisfy the equation c(x) = x + c(x)2; so its
coefficients satisfy the recurrence relation and initial condition for the
Catalan numbers Cn. Since these data determine the numbers uniquely,
our final formula is indeed valid.

Second, this is a case where, even once you know the formula for the Cata-
lan numbers, it is difficult to show directly that they satisfy the recurrence
relation. (Spend a few moments trying; you will be convinced of this!)

And third, it is not at all obvious that n divides the binomial coeffi-

cient

(
2n− 2

n− 1

)
; but since Cn counts something, it is an integer, and so this

divisibility is indeed true.

3.3 Other Catalan objects

Here are a small selection of the many objects counted by Catalan numbers.
The obvious ways of verifying this for a class of objects are either

(a) to verify the Catalan recurrence and initial condition; or

(b) to find a bijection to a known class of Catalan objects.

There are sometimes other less obvious ways, as we will see in the case of
Dyck paths.

Where possible I have given an illustration of the five Catalan objects
counted by C4.
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Binary trees
A binary tree has a root of degree 2; the other vertices have degree 1 or

3. So every non-root vertex is either a leaf or has two descendants, which we
specify as left and right descendants.

The number of binary trees with n leaves is Cn. Figure 1 shows the
correspondence with bracketed products: the tree is a “parse tree” for the
product.
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Figure 1: Binary trees and bracketed products

Rooted plane trees
The number of rooted plane trees with n edges is Cn+1. Figure 2 shows

the rooted plane trees with three edges.
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Figure 2: Rooted plane trees

Dissections of polygons
An n-gon can be dissected into triangles by drawing n − 2 non-crossing

diagonals. There are Cn−1 dissections of an n-gon. Figure 3 shows dissections
of a pentagon.

Dyck paths
A Dyck path starts at the origin and ends at (2n, 0), moving at each step

to the adjacent lattice point in either the north-easterly or south-easterly
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Figure 3: Dissections of a polygon

direction and never going below the X-axis. (An even number of steps is
required since each step either increases or decreases the Y-coordinate by 1.)

Figure 4 shows the Dyck paths with n = 3.
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Figure 4: Dyck paths

The number of Dyck paths is Cn+1, and of these, Cn never return to the
X-axis before the end. I will indicate the proof since it illustrates another
technique.

Let Dn be the number of Dyck paths, and En the number which never
return to the axis. Now a Dyck path begins by moving from (0, 0) to (1, 1)
and ends by moving from (2n − 1, 1) to (2n, 0); if it did not return to the
axis in between, then removing these “legs” gives a shorter Dyck path. So

En = Dn−1.

Suppose that a Dyck path first returns to the axis at (2k, 0). Then it is a
composite of a non-returning Dyck path of length 2k with an arbitrary Dyck
path of length 2(n− k); so

Dn =
n∑

k=1

EkDn−k.

Solving these simultaneous recurrences gives the result.
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Ballot numbers
An election is held with two candidates A and B, each of whom receives

exactly n votes. In how many ways can the votes be counted so that A is
never behind in the count?

It is easy to match these ballot numbers with Dyck paths. For n = 3, the
five counts are AAABBB, AABABB, AABBAB, ABAABB, and ABABAB.

This can be described another way. In a 2×n array, we place the numbers
1, . . . , 2n in order against the candidates who receive those votes. This gives
the representations shown in Figure 5.

1 2 3

4 5 6

1 2 4

3 5 6

1 2 5

3 4 6

1 3 4

2 5 6

1 3 5

2 4 6

AAABBB AABABB AABBAB ABAABB ABABAB

Figure 5: Tableaux

Note that the numbers increase along each row and down each column.

3.4 Young diagrams and tableaux

The five objects shown are known as Young tableaux ; they arise in the rep-
resentation theory of the symmetric group and much related combinatorics.

A Young diagram (sometimes called a Ferrers diagram) consists of n
boxes arranged in left-aligned rows, the number of boxes in each row being
a non-decreasing function of the row number. This is simply a graphical
representation of a partition of n: for each partition n = a1 + a2 + · · ·, with
a1 ≥ a2 ≥ . . ., we take a1 boxes in the first row, a2 in the second, and so on.
Now a Young tableau is a filling of the boxes with the numbers 1, 2, . . . , n
so that each row and each column is in increasing order. You maay like to
invent a ballot interpretation for the number of Young tableaux belonging to
a given diagram.

This combinatorics is important in describing the representation theory
of the symmetric group Sn, the group of all permutations of {1, . . . , n}. It
is known that the irreducible matrix representations of Sn over the complex
numbers are in one-to-one correspondence with the partitions of n (that is, to
the Young diagrams); the degree of a representation is equal to the number
of Young tableaux belonging to the corresponding diagram. Thus, the five
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Young tableaux shown in the preceding section correspond to an irreducible
representation of degree 5 of the group S6.

There is a “hook length formula” for the number of Young tableaux cor-
responding to a given diagram. The hook associated with a cell consists of
that cell and all those to its right in the same row or below it in the same
column. The hook length of a cell is the number of cells in its hook. Now the
number of Young tableaux associated with the diagram is equal to n! divided
by the product of the hook lengths of all its cells.

Thus for the diagram with two rows of length 3, the formula gives

6!

4 · 3 · 2 · 3 · 2 · 1
= 5.

3.5 Wedderburn–Etherington numbers

What happens if we count binary trees without the left-right distinction
between the two children at each node? In other words, two binary trees will
count as “the same” if a sequence of reversals of subtrees above each point
converts one to the other.

It can be shown that the recurrence relation for the number Wn of binary
trees with this convention (the Wedderburn–Etherington numbers is

Wn =


1
2

n−1∑
i=1

WiWn−i if n is odd,

1
2

(
n−1∑
i=1

WiWn−i + Wn/2

)
if n is even,

and that the generating function w(x) satisfies

w(x) = x + 1
2
(w(x)2 + w(x2)).

This is much more difficult to solve. Whereas Cn is roughly 4n (in the

sense that the limit of C
1/n
n as n→∞ is 4), Wn is roughly 2.483 . . .n in the

same sense.

Exercises

1 Give a counting proof of the Vandermonde convolution in the case where
a and b are natural numbers.
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2 Verify some of the formulae for Catalan objects in the notes, either by
deriving a recurrence, or by finding bijections between the objects counted.

3 In the analysis of Dyck paths, adopt the convention that D0 = 1 and
E0 = 0. Prove that, if d(x) and e(x) are the generating functions, then

xd(x) = e(x), d(x) = 1 + e(x)d(x).

Hence derive formulae for Dn and En.

4 Use the hook length formula to derive the formula for the Catalan number
Cn.

5 Prove the recurrence relation and the equation for the generating function
for the Wedderburn–Etherington numbers.
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