Acyclic orientations of graphs

Celia Glass and Peter Cameron

CSG, 23 March 2012
Thanks to Jo Ellis-Monaghan for the following:

Classical Mathematics--Geometry
The Mathematics of: Measurement, Surveying, Architecture, Astronomy, Volumes and Areas

Static Measurement
(Euclid of Alexandria
325 BC-265 BC)

Mathematics of the Future--Combinatorics
The Mathematics of: Computer Chips, the Internet, Electrical Circuits, Cell Phone Coverage, Transportation Networks, Social Interactions, Genetics, Food Webs….

Interconnections and Relations
(William Tutte 1917-2002)

Early Mathematics--Arithmetic
The Mathematics of: Counting, Money, Inventory, Taxes, Census, Apportionment, Calendars

Enumeration
(Cavemen Prehistory)

www.cartoonstock.com
www.valdostamuseum.org/hamsmith/eghier.html

The Mathematics of: Projectiles, Optimization, Engineering, Machines, Rockets, Planetary Motion, Gravity…

Motion in time and space

Modern Mathematics--Calculus
(Sir Isaac Newton 1643-1727)
Thanks to Jo Ellis-Monaghan for the following:

Early Mathematics--Arithmetic
(Cavemen Prehistory)

The Mathematics of:
Counting, Money, Inventory, Taxes, Census, Apportionment, Calendars

Enumeration

Classical Mathematics--Geometry
(Euclid of Alexandria 325 BC-265 BC)

The Mathematics of:
Measurement, Surveying, Architecture, Astronomy, Volumes and Areas

Static Measurement

Modern Mathematics--Calculus
(Sir Isaac Newton 1643-1727)

The Mathematics of:
Projectiles, Optimization, Engineering, Machines, Rockets, Planetary Motion, Gravity…

Motion in time and space

Mathematics of the Future--Combinatorics
(William Tutte 1917-2002)

The Mathematics of:
Computer Chips, the Internet, Electrical Circuits, Cell Phone Coverage, Transportation Networks, Social Interactions, Genetics, Food Webs….

Interconnections and Relations
A mobile phone mast
Ofcom manage UK spectrum

- Frequency assignment algorithms for 38Ghz (microwave) bandwidth
- Academic formulation is all-at-once
 - PhD under EPSRC & Ofcom (Ian Davies)
- Assignment done by Ofcom one-at-a-time
 - research contract from Ofcom with Rutherford Appleton Laboratory +
What Is Frequency Assignment?

- *Radio spectrum* is a finite resource
- Prohibiting factor is *interference*
- Basic requirement is for efficient re-use of available spectrum, in different locations
- The spectrum is divided into discrete, uniformly spaced channels - *frequencies*
- Interference between transmitters is measured in *separation distance* between their frequencies

...
Interference Graph Representation

Graph theoretic representation, \(G=(V,E) \)

- Vertex set \(V \) represents the transmitters
- An edge \((u,v) \in E\) occurs between transmitters which potentially may interfere

A Frequency Assignment is a mapping \(f:V \rightarrow F \)

where \(F=\{1,2, \ldots, N\} \) is the set of available frequencies. Separation constraints:

\[
|f(u) - f(v)| \geq d_{uv} \quad \forall (u,v) \in E
\]

Objective = Minimise the number of frequencies required, the span \(Sp(G) \)
Previous solution approaches to FAP

• Several large projects
 • CALMA/RA initiatives/ROADEF, etc.

• Meta-heuristic approaches:
 • Tabu search - successful but only with problem specific tuning
 • SA - successful but requires extensive tuning for each instance type. GA’s - not as successful but requires less tuning than TS/SA
 • Neural Networks - generally not successful
 • Constraint Satisfaction

• Optimisation approaches:
 • branch and bound/polyhedral methods
Problem Comparison

Graph Colouring
- Chromatic Number Problem (CNP)
- k-colouring problem
- Partitioning
- Separation distances all equal to 1
- $G_{1000,0.5}$ a typical data set.
- No a priori structure – hence difficult
- Many good heuristic methods exist

Frequency Assignment
- Minimise no. frequencies/ span
- Minimise interference
- Number Assignment
- Includes separation distances
- FAP instances generally smaller
- Structure exists in the interference graph
Representations of Frequency Assignment

Default representation of solution is
Numbering of vertices - like colouring of vertices gives enormous solution space

Directed Acyclic Graphs (DAG)
captures essences of span, but

how large is DAG space?
All our graphs are finite, and almost always they are connected. A graph G has vertex set V and edge set E; usually, $|V| = n$ and $|E| = m$.
All our graphs are finite, and almost always they are connected. A graph G has vertex set V and edge set E; usually, $|V| = n$ and $|E| = m$.

An orientation of G is a digraph obtained by replacing each edge $\{v, w\}$ by one or other of its orderings, i.e. either (v, w) or (w, v). An orientation is acyclic if it does not contain any directed cycles, i.e. distinct vertices v_0, \ldots, v_{k-1} such that $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-2}, v_{k-1}), (v_{k-1}, v_0)$ are arcs.
All our graphs are finite, and almost always they are connected. A graph G has vertex set V and edge set E; usually, $|V| = n$ and $|E| = m$.

An orientation of G is a digraph obtained by replacing each edge $\{v, w\}$ by one or other of its orderings, i.e. either (v, w) or (w, v). An orientation is acyclic if it does not contain any directed cycles, i.e. distinct vertices v_0, \ldots, v_{k-1} such that $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-2}, v_{k-1}), (v_{k-1}, v_0)$ are arcs.

Every graph has an acyclic orientation. Number the vertices from 1 to n, and orient every edge from the vertex with smaller number to the vertex with the larger.
Acyclic orientations and colourings

Let \(AO(G) \) be the set of acyclic orientations of \(G \), and \(Col(G) \) the set of proper colourings of \(G \) (with an arbitrary number of colours, but the colours are ordered and all of them are used).
Acyclic orientations and colourings

Let $AO(G)$ be the set of acyclic orientations of G, and $Col(G)$ the set of proper colourings of G (with an arbitrary number of colours, but the colours are ordered and all of them are used). We define maps between these two sets, as follows.
Acyclic orientations and colourings

Let $\text{AO}(G)$ be the set of acyclic orientations of G, and $\text{Col}(G)$ the set of proper colourings of G (with an arbitrary number of colours, but the colours are ordered and all of them are used). We define maps between these two sets, as follows.

- Given a colouring c of G with k colours, let the colour classes be C_1, C_2, \ldots, C_k; number the vertices in C_1, then those in C_2, and so on up to C_k. Now orient edges from smaller number to greater. The result is an acyclic orientation.
Acyclic orientations and colourings

Let $AO(G)$ be the set of acyclic orientations of G, and $Col(G)$ the set of proper colourings of G (with an arbitrary number of colours, but the colours are ordered and all of them are used). We define maps between these two sets, as follows.

- Given a colouring c of G with k colours, let the colour classes be C_1, C_2, \ldots, C_k; number the vertices in C_1, then those in C_2, and so on up to C_k. Now orient edges from smaller number to greater. The result is an acyclic orientation.

- Given an acyclic orientation D of G, let C_1 be the set of sources (vertices which are not the target of any arc), C_2 the set of sources in the induced subgraph on $V(G) \setminus C_1$, and so on. There are no edges within any C_i, so (C_1, C_2, \ldots, C_k) is a proper colouring of G, which we call the canonical colouring associated with the acyclic orientation.
Remarks

The “canonical” construction can be applied to any orientation of G; it terminates (with $C_1 \cup C_2 \cup \cdots \cup C_k = V(G)$) if and only if the orientation is acyclic. So this is a polynomial-time algorithm to test whether an orientation is acyclic and to find the corresponding colouring if it is.
The “canonical” construction can be applied to any orientation of G; it terminates (with $C_1 \cup C_2 \cup \cdots \cup C_k = V(G)$) if and only if the orientation is acyclic. So this is a polynomial-time algorithm to test whether an orientation is acyclic and to find the corresponding colouring if it is.

The canonical colouring has an alternative description: C_i is the set of all vertices v for which the longest directed path ending at v (in the orientation D) contains i vertices. In particular, the number of colours used is equal to the number of vertices in the longest directed path in the orientation: this number is called the span of D, written $\text{Span}(D)$.
How many colours?

At risk of confusion, we define the span of an undirected graph G to be the number of vertices in the longest path of G; we denote this also by $\text{Span}(G)$. Also, $\chi(G)$ denotes the chromatic number of G, the least number of colours in any proper colouring of G.

Theorem

For any acyclic orientation D of G, we have $\chi(G) \leq \text{Span}(D) \leq \text{Span}(G)$.

Question

Is it true that, for every integer k with $\chi(G) \leq k \leq \text{Span}(G)$, there is an acyclic orientation D of G with $\text{Span}(D) = k$?
How many colours?

At risk of confusion, we define the span of an undirected graph G to be the number of vertices in the longest path of G; we denote this also by $\text{Span}(G)$. Also, $\chi(G)$ denotes the chromatic number of G, the least number of colours in any proper colouring of G.

Theorem

- For any acyclic orientation D of G, we have $\chi(G) \leq \text{Span}(D) \leq \text{Span}(G)$.
How many colours?

At risk of confusion, we define the span of an undirected graph G to be the number of vertices in the longest path of G; we denote this also by $\text{Span}(G)$. Also, $\chi(G)$ denotes the chromatic number of G, the least number of colours in any proper colouring of G.

Theorem

- For any acyclic orientation D of G, we have $\chi(G) \leq \text{Span}(D) \leq \text{Span}(G)$.
- There are acyclic orientations D_1 and D_2 for which $\text{Span}(D_1) = \chi(G)$ and $\text{Span}(D_2) = \text{Span}(G)$.
How many colours?

At risk of confusion, we define the span of an undirected graph G to be the number of vertices in the longest path of G; we denote this also by $\text{Span}(G)$. Also, $\chi(G)$ denotes the chromatic number of G, the least number of colours in any proper colouring of G.

Theorem

- For any acyclic orientation D of G, we have $\chi(G) \leq \text{Span}(D) \leq \text{Span}(G)$.

- There are acyclic orientations D_1 and D_2 for which $\text{Span}(D_1) = \chi(G)$ and $\text{Span}(D_2) = \text{Span}(G)$.

Question

Is it true that, for every integer k with $\chi(G) \leq k \leq \text{Span}(G)$, there is an acyclic orientation D of G with $\text{Span}(D) = k$?
Number of directed acyclic graphs on 10 vertices

\[A_{10} = 3628800x^{45} + 146966400x^{44} \\
+ 2899411200x^{43} + 37126101600x^{42} \\
+ 346868600400x^{41} + 2520365009400x^{40} \\
+ 14823549568800x^{39} + 72525982284000x^{38} \\
+ 30105630457600x^{37} + 1076055091414800x^{36} \\
+ 3349674724515840x^{35} + 9163072757462400x^{34} \\
+ 22184317673849520x^{33} + 47807980082864190x^{32} \\
+ 92129542599754800x^{31} + 159344586974784960x^{30} \\
+ 248071275833167080x^{29} + 348409073759608260x^{28} \\
+ 442176547815875040x^{27} + 507675000725890200x^{26} \\
+ 527641018776771732x^{25} + 496515058907266500x^{24} \\
+ 422913488921810640x^{23} + 325827430873816320x^{22} \\
+ 226797475663517760x^{21} + 142397107185335940x^{20} \\
+ 80476050938371200x^{19} + 40832558916877560x^{18} \\
+ 18542265211960110x^{17} + 7508190221370540x^{16} \\
+ 2699438041234560x^{15} + 857577282883200x^{14} \\
+ 239434790091840x^{13} + 58405018216860x^{12} \\
+ 12368745491760x^{11} + 2259242749800x^{10} \\
+ 353530511420x^9 + 47056700160x^8 \\
+ 5284309680x^7 + 495329520x^6 \\
+ 38167920x^5 + 2362500x^4 \\
+ 113280x^3 + 3960x^2 \\
+ 90x + 1 \]
A question

Question
What can be said about the distribution of the numbers of acyclic orientations of all graphs on the vertex set \{1, \ldots, n\} with m edges? For example, can one calculate the variance, or some other measure of spread?
What can be said about the distribution of the numbers of acyclic orientations of all graphs on the vertex set \(\{1, \ldots, n\} \) with \(m \) edges? For example, can one calculate the variance, or some other measure of spread?

Trivially, the number is between 1 and \(\min\{n!, 2^m\} \).
A question

Question
What can be said about the distribution of the numbers of acyclic orientations of all graphs on the vertex set \(\{1, \ldots, n\} \) with \(m \) edges? For example, can one calculate the variance, or some other measure of spread?

Trivially, the number is between 1 and \(\min\{n!, 2^m\} \). Next week, Robert Schumacher will say more about some aspects of this question, and will give substantial improvements to this trivial bound.
The Petersen graph G has $\chi(G) = 3$ and Span(G) = 10. The numbers of acyclic orientations of G with span equal to 3, 4, ..., 10 are 80, 640, 2160, 4920, 4080, 2880, 1680, 240 respectively. There are 16680 acyclic orientations, falling into 168 isomorphism classes.
The Petersen graph G has $\chi(G) = 3$ and $\text{Span}(G) = 10$. The numbers of acyclic orientations of G with span equal to 3, 4, \ldots, 10 are 80, 640, 2160, 4920, 4080, 2880, 1680, 240 respectively. There are 16680 acyclic orientations, falling into 168 isomorphism classes.
The Petersen graph, continued

The chromatic polynomial of the Petersen graph is

\[
P(q) = q(q - 1)(q - 2) \times (q^7 - 12q^6 + 67q^5 - 230q^4 + 529q^3 - 814q^2 + 775q - 352).
\]

We find that \(P(3) = 120 \), whereas there are only 80 acyclic orientations with span 3.
The Petersen graph, continued

The chromatic polynomial of the Petersen graph is

\[P(q) = q(q - 1)(q - 2) \times (q^7 - 12q^6 + 67q^5 - 230q^4 + 529q^3 - 814q^2 + 775q - 352). \]

We find that \(P(3) = 120 \), whereas there are only 80 acyclic orientations with span 3.
So, in general, the composition of the two mappings is not the identity.
The vertices of the Petersen graph can be identified with the 2-element subsets of the set $\{1, 2, 3, 4, 5\}$, two vertices adjacent if and only if they are disjoint. The colour classes in a typical 3-colouring are

$\{12, 13, 14, 15\}, \{23, 24, 25\}, \{34, 35, 45\}$.
The Petersen graph, continued

The vertices of the Petersen graph can be identified with the 2-element subsets of the set \(\{1, 2, 3, 4, 5\} \), two vertices adjacent if and only if they are disjoint. The colour classes in a typical 3-colouring are

\[
\{12, 13, 14, 15\}, \{23, 24, 25\}, \{34, 35, 45\}.
\]

There are 20 such partitions (the number of choices of the numbers taking the place of 1 and 2), and \(3! = 6 \) orderings of the colours. Now we see that, in the colouring with the colour classes (in order)

\[
\{12, 23, 25\}, \{14, 24, 34, 45\}, \{13, 15, 35\},
\]

the vertex 24 is a sink in the corresponding acyclic orientation, so it is transferred to the first class in the canonical colouring.
Proof of the theorem

The fact that $\text{Span}(D)$ lies between $\chi(G)$ and $\text{Span}(G)$ is clear.
The fact that \(\text{Span}(D) \) lies between \(\chi(G) \) and \(\text{Span}(G) \) is clear. The composition of the maps \(\text{Col}(G) \to \text{AO}(G) \to \text{Col}(G) \) does not increase the number of colours. So if we start with a minimal colouring we obtain an acyclic orientation with minimal span.
The fact that \(\text{Span}(D) \) lies between \(\chi(G) \) and \(\text{Span}(G) \) is clear. The composition of the maps \(\text{Col}(G) \rightarrow \text{AO}(G) \rightarrow \text{Col}(G) \) does not increase the number of colours. So if we start with a minimal colouring we obtain an acyclic orientation with minimal span. If we take a path containing \(\text{Span}(G) \) vertices, direct it consistently, and extend arbitrarily to an acyclic orientation \(D \) of \(G \), the result will have \(\text{Span}(D) = \text{Span}(G) \).
Proof of the theorem

The fact that \(\text{Span}(D) \) lies between \(\chi(G) \) and \(\text{Span}(G) \) is clear. The composition of the maps \(\text{Col}(G) \to \text{AO}(G) \to \text{Col}(G) \) does not increase the number of colours. So if we start with a minimal colouring we obtain an acyclic orientation with minimal span. If we take a path containing \(\text{Span}(G) \) vertices, direct it consistently, and extend arbitrarily to an acyclic orientation \(D \) of \(G \), the result will have \(\text{Span}(D) = \text{Span}(G) \).

Question

- What can be said about the distribution of the numbers of acyclic orientations with each possible span?
Proof of the theorem

The fact that $\text{Span}(D)$ lies between $\chi(G)$ and $\text{Span}(G)$ is clear. The composition of the maps $\text{Col}(G) \rightarrow \text{AO}(G) \rightarrow \text{Col}(G)$ does not increase the number of colours. So if we start with a minimal colouring we obtain an acyclic orientation with minimal span.

If we take a path containing $\text{Span}(G)$ vertices, direct it consistently, and extend arbitrarily to an acyclic orientation D of G, the result will have $\text{Span}(D) = \text{Span}(G)$.

Question

- What can be said about the distribution of the numbers of acyclic orientations with each possible span?

- Is it true that every colouring of G with $\chi(G)$ colours is, up to re-ordering of the colours, the canonical colouring associated with some acyclic orientation?
A recurrence relation for the number $a(n, m)$ of acyclic digraphs on the vertex set $\{1, \ldots, n\}$ with m arcs was found by Bender, Richmond, Robinson and Wormald in 1986:
A recurrence relation for the number $a(n, m)$ of acyclic digraphs on the vertex set $\{1, \ldots, n\}$ with m arcs was found by Bender, Richmond, Robinson and Wormald in 1986:

Theorem

Let $A_n(x) = \sum_m a(n, m)x^m$. Then

$$A_n(x) = \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} (1 + x)^{i(n-i)} A_{n-i}(x).$$
A recurrence relation for the number $a(n,m)$ of acyclic digraphs on the vertex set $\{1, \ldots, n\}$ with m arcs was found by Bender, Richmond, Robinson and Wormald in 1986:

Theorem

Let $A_n(x) = \sum_m a(n,m)x^m$. Then

$$A_n(x) = \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} (1 + x)^{i(n-i)} A_{n-i}(x).$$

Since the number of graphs with on $\{1, \ldots, n\}$ with m edges is simply $\binom{n(n-1)/2}{m}$, we can easily compute (for given n,m) the average number of acyclic orientations of such a graph.
\[n = 10 \]

\[A_{10} = 3628800 x^{45} + 146966400 x^{44} + 289941200 x^{43} + 37126101600 x^{42} + 34686600400 x^{41} + 2520365009400 x^{40} + 14823549568800 x^{39} + 72525982284000 x^{38} + 30105630457600 x^{37} + 1076055091414800 x^{36} + 3349674724515840 x^{35} + 9163072757462400 x^{34} + 22184317673849520 x^{33} + 47807980082864190 x^{32} + 92129542599754800 x^{31} + 159344589748784960 x^{30} + 248071275833167080 x^{29} + 348409073759608260 x^{28} + 442176547815875040 x^{27} + 507675000725890200 x^{26} + 527641018776771732 x^{25} + 496515058907266500 x^{24} + 422913488921810640 x^{23} + 325827430873816320 x^{22} + 226797475663517760 x^{21} + 142397107185335940 x^{20} + 8047605093871200 x^{19} + 40832558916877560 x^{18} + 18542265211960110 x^{17} + 7508190221370540 x^{16} + 2699438041234560 x^{15} + 857577282883200 x^{14} + 239434790091840 x^{13} + 58405018216860 x^{12} + 12368745491760 x^{11} + 2259242749800 x^{10} + 353530511420 x^9 + 47056700160 x^8 + 5284309680 x^7 + 495329520 x^6 + 38167920 x^5 + 2362500 x^4 + 113280 x^3 + 3960 x^2 + 90 x + 1 \]
Average number of acyclic orientations, $n = 10$

The axes give number of edges (0 to 45) and average number of acyclic orientations (1 to $10! = 3628800$).
Average number of acyclic orientations, $n = 10$

The axes give number of edges (0 to 45) and average number of acyclic orientations (1 to $10! = 3628800$).
Proportion of orientations which are acyclic, $n = 10$

The axes give number m of edges (0 to 45) and average number of acyclic orientations divided by 2^m (1 to $10!/2^{45}$).
Proportion of orientations which are acyclic, $n = 10$

The axes give number m of edges (0 to 45) and average number of acyclic orientations divided by 2^m (1 to $10!/2^{45}$).
Given a graph G on n vertices, how many acyclic orientations does G have? Stanley proved:
Given a graph G on n vertices, how many acyclic orientations does G have? Stanley proved:

Theorem

The number of acyclic orientations of an n-vertex graph G is $(-1)^n P_G(-1)$, where $P_G(q)$ is the chromatic polynomial of the graph G.

Now this is an evaluation of the Tutte polynomial of G, so it follows from the results of Jaeger, Vertigan and Welsh that the problem of counting the acyclic orientations of a general graph is #P-complete.
Given a graph G on n vertices, how many acyclic orientations does G have? Stanley proved:

Theorem

The number of acyclic orientations of an n-vertex graph G is $(-1)^nP_G(-1)$, where $P_G(q)$ is the chromatic polynomial of the graph G.

Now this is an evaluation of the Tutte polynomial of G, so it follows from the results of Jaeger, Vertigan and Welsh that the problem of counting the acyclic orientations of a general graph is $\#P$-complete.
Goldberg and Jerrum, and others, have investigated approximate evaluations of the Tutte polynomial (in the sense of the existence of a fully polynomial randomized approximation scheme, or FPRAS). As far as we are aware, the question has not been settled for this particular evaluation.
Goldberg and Jerrum, and others, have investigated approximate evaluations of the Tutte polynomial (in the sense of the existence of a fully polynomial randomized approximation scheme, or FPRAS). As far as we are aware, the question has not been settled for this particular evaluation. One way to find an FPRAS is to find a Markov chain which converges rapidly to the uniform distribution on the objects being considered. We will discuss this further later on.
Cameron, Jackson and Rudd defined an orbital chromatic polynomial (depending on a graph G and a group of automorphisms of G) whose value at a positive integer q is the number of orbits of the group on proper q-colourings of G. Substituting $q = -1$ in the polynomial does not, in general, give the number of orbits on acyclic orientations of G. However, there is a twisted orbital chromatic polynomial which does have this property. I might tell you about this some other time!
Cameron, Jackson and Rudd defined an orbital chromatic polynomial (depending on a graph G and a group of automorphisms of G) whose value at a positive integer q is the number of orbits of the group on proper q-colourings of G. Substituting $q = -1$ in the polynomial does not, in general, give the number of orbits on acyclic orientations of G.
Cameron, Jackson and Rudd defined an orbital chromatic polynomial (depending on a graph G and a group of automorphisms of G) whose value at a positive integer q is the number of orbits of the group on proper q-colourings of G. Substituting $q = -1$ in the polynomial does not, in general, give the number of orbits on acyclic orientations of G. However, there is a twisted orbital chromatic polynomial which does have this property. I might tell you about this some other time!
The arc-flip graph

The arc-flip graph of G is the graph whose vertex set is the set $AO(G)$ of acyclic orientations of G, with two orientations D_1 and D_2 joined if they differ in the direction of a single arc.
The arc-flip graph

The arc-flip graph of G is the graph whose vertex set is the set $\text{AO}(G)$ of acyclic orientations of G, with two orientations D_1 and D_2 joined if they differ in the direction of a single arc. The distance between two elements $D_1, D_2 \in \text{AO}(G)$ is the number of arcs whose direction is different in D_1 and D_2.

Theorem

The distance between D_1 and D_2 is equal to the distance between the corresponding vertices of the arc-flip graph. In other words, it is possible to move from D_1 to D_2 by successively reversing the direction of arcs, so that each arc is reversed at most once, and we stay inside the set $\text{AO}(G)$ of acyclic orientations at every step.

Corollary

The diameter of the arc-flip graph of G is equal to the number m of edges of G; and the unique acyclic orientation D^* at maximum distance from D_1 is obtained by reversing all the edges.
The arc-flip graph of G is the graph whose vertex set is the set $AO(G)$ of acyclic orientations of G, with two orientations D_1 and D_2 joined if they differ in the direction of a single arc. The distance between two elements D_1, D_2 pf $AO(G)$ is the number of arcs whose direction is different in D_1 and D_2.

Theorem

The distance between D_1 and D_2 is equal to the distance between the corresponding vertices of the arc-flip graph. In other words, it is possible to move from D_1 to D_2 by successively reversing the direction of arcs, so that each arc is reversed at most once, and we stay inside the set $AO(G)$ of acyclic orientations at every step.
The arc-flip graph

The arc-flip graph of G is the graph whose vertex set is the set $AO(G)$ of acyclic orientations of G, with two orientations D_1 and D_2 joined if they differ in the direction of a single arc. The distance between two elements D_1, D_2 pf $AO(G)$ is the number of arcs whose direction is different in D_1 and D_2.

Theorem

The distance between D_1 and D_2 is equal to the distance between the corresponding vertices of the arc-flip graph. In other words, it is possible to move from D_1 to D_2 by successively reversing the direction of arcs, so that each arc is reversed at most once, and we stay inside the set $AO(G)$ of acyclic orientations at every step.

Corollary

The diameter of the arc-flip graph of G is equal to the number m of edges of G; and the unique acyclic orientation D^* at maximum distance from D is obtained by reversing all the edges.
The previous result means, in particular, that in every acyclic digraph, there is at least one arc which can be reversed without destroying the acyclicity.
The arc-flip graph, continued

The previous result means, in particular, that in every acyclic digraph, there is at least one arc which can be reversed without destroying the acyclicicity.

Theorem

Any acyclic orientation of a connected graph has at least \(n - 1 \) arcs which can be reversed; the corresponding edges form a connected subgraph.
The previous result means, in particular, that in every acyclic digraph, there is at least one arc which can be reversed without destroying the acycliclicity.

Theorem

Any acyclic orientation of a connected graph has at least $n - 1$ arcs which can be reversed; the corresponding edges form a connected subgraph.

Robert Schumacher has shown that this is best possible: every connected graph G has an acyclic orientation in which no more than $n - 1$ edges can be reversed.
The arc-flip graph, continued

The previous result means, in particular, that in every acyclic digraph, there is at least one arc which can be reversed without destroying the acyclicity.

Theorem

Any acyclic orientation of a connected graph has at least \(n - 1 \) *arcs which can be reversed; the corresponding edges form a connected subgraph.*

Robert Schumacher has shown that this is best possible: every connected graph \(G \) has an acyclic orientation in which no more than \(n - 1 \) edges can be reversed.

Another remark is that an acyclic digraph \(D \) and its reversal \(D^* \) have the same span, though the canonical colourings are not always the same up to reversal of the order of colours.
A Markov chain

We spent a while studying a Markov chain for moving round the space of acyclic orientations of G. However, after Catherine Greenhill’s CSG talk, we decided to present a simpler, less lazy, Markov chain.
A Markov chain

We spent a while studying a Markov chain for moving round the space of acyclic orientations of G. However, after Catherine Greenhill’s CSG talk, we decided to present a simpler, less lazy, Markov chain.

The state space is the set $\text{AO}(G)$ of acyclic orientations of G. A move consists of the following:

- Choose a random arc e (uniformly).
- If e is reversible (that is, if the digraph D' obtained by reversing e is acyclic), then reverse it; otherwise do nothing.
A Markov chain

We spent a while studying a Markov chain for moving round the space of acyclic orientations of G. However, after Catherine Greenhill’s CSG talk, we decided to present a simpler, less lazy, Markov chain.

The state space is the set $\text{AO}(G)$ of acyclic orientations of G. A move consists of the following:

- Choose a random arc e (uniformly).
- If e is reversible (that is, if the digraph D' obtained by reversing e is acyclic), then reverse it; otherwise do nothing.

The Markov chain is connected, and aperiodic (if G is not a tree, there is at least some move which is forbidden), and is symmetric (the probabilities of moving from D to D' and from D' to D are equal); so the limiting distribution is uniform.
The big question, of course, is:

Question

What is the mixing time of this Markov chain?

This may be a hard question. For, if the Markov chain is rapidly mixing, then we have an efficient way to sample acyclic orientations of G uniformly, and hence there will be an FPRAS for the number of acyclic orientations. We have some partial results.
Mixing time

The big question, of course, is:

Question

What is the mixing time of this Markov chain?

This may be a hard question. For, if the Markov chain is rapidly mixing, then we have an efficient way to sample acyclic orientations of G uniformly, and hence there will be an FPRAS for the number of acyclic orientations. We have some partial results.

However, the moves may be quite efficient in practical. For example, with the Petersen graph, the distribution of spans of the acyclic orientations is reproduced remarkably accurately after runs of just 20 steps (only a little more than the number of edges).
Another Markov chain

Since the total number of acyclic digraphs with \(n \) vertices and \(m \) arcs is easy to compute, there may be a nice Markov chain which converges rapidly to the uniform distribution on this space.
Another Markov chain

Since the total number of acyclic digraphs with n vertices and m arcs is easy to compute, there may be a nice Markov chain which converges rapidly to the uniform distribution on this space. This will probably have to delete arcs and add in new ones, rather like what Jerrum and Sinclair did for matchings.
Another Markov chain

Since the total number of acyclic digraphs with n vertices and m arcs is easy to compute, there may be a nice Markov chain which converges rapidly to the uniform distribution on this space. This will probably have to delete arcs and add in new ones, rather like what Jerrum and Sinclair did for matchings. We have done some preliminary work on this …