########################################################################### # # # This file defines a number of GAP functions for computing with PLRs. # # Please refer to "Primitive Lambda-Roots" for definitions. # # Note one small difference - invariant factors and elementary divisors # # are ordered differently here! (This may change.) # # Note that GAP already defines such functions as: # # - Lambda(n) (Carmichael's lambda-function) # # - Phi(n) (Euler's phi-function) # # - MoebiusMu(n) (Moebius' mu-function # # - OrderMod(x,n) (The order of x mod n) # # - PowerMod(x,d,n) (x^d mod n) # # # # The new functions are the following. The first few are calculated by # # formulae given in "Primitive Lambda-Roots". # # - Xi(n) (Phi(n)/Lambda(n)) # # - LambdaStar(m) (The maximum n for which Lambda(n) divides m) # # - ElemDivs(n) (The list of elementary divisors of U(n), # # ordered by prime power and decreasing exponent) # # - InvFacts(n) (The list of invariant factors of U(n), # # ordered by reverse divisibility) # # - NrPLRs(n) (The number of PLRs of n) # # - NrPCs(n) (The number of power classes of PLRs of n) # # - NrNegatingPLRs(n) (The number of negating PLRs of n) # # - NrNegatingPCs(n) # # - NrFraternities(n) (The number of fraternities of PLRs of n) # # # # From here on we don't know formulae, so we list! # # This is likely to be much slower. # # - PowerClass(x,n) (The power class of x mod n, where x is a PLR) # # - EPowerClass(x,n) (All powers of x mod n) # # - IsPLR(x,n), PLRs(n) (The test for and list of PLRs of n) # # - SmallestPLR(n) (the smallest PLR of n) # # - IsNegatingPLR(x,n), NegatingPLRs(n) # # - IsInwardPLR(x,n), InwardPLRs(n) # # - NrInwardPLRs(n) and NrInwardPCs(n) # # - IsStrongPLR(x,n), StrongPLRs(n) (strong = inward and non-negating) # # - NrStrongPLRs(n) and NrStrongPCs(n) # # - IsSelfSeekingPLR(x,n), SelfSeekingPLRs(n) # # - SubofUnits(l,n) (The subgroup of U(n) generated by the list l) # # - ListSubofUnits(l,n), NrSubofUnits(l,n) # # # ########################################################################### # # Xi(n) = Phi(n)/Lambda(n), measure of how far PLRs from primitive roots # Xi:=function(n) return QuoInt(Phi(n),Lambda(n)); end; # # The function "LambdaStar" is computed using the algorithm # given in "Primitive Lambda-Roots" # LambdaStar:=function(m) local l,x,y,p; if RemInt(m,2)=1 then return 2; fi; l:=PrimePowersInt(m); x:=2^(l[2]+2); for p in [1..QuoInt(m,2)] do if RemInt(m,2*p)=0 then if IsPrimeInt(2*p+1) then y:=1; while RemInt(m,y)=0 do y:=y*(2*p+1); od; x:=x*y; fi; fi; od; return x; end; # # The function "ppfi" computes the prime power factors of its integer # argument, based on the GAP function PrimePowersInt (which gives # primes and exponents). # ppfi:=function(n) local l,ll,m; l:=PrimePowersInt(n); ll:=[]; for m in [1..QuoInt(Size(l),2)] do Add(ll, l[2*m-1]^l[2*m]); od; return ll; end; # # The function "orderpp" is used to put the result in order: we order # prime powers first by the prime involved and then by the exponent. # orderpp:=function(q1,q2) # both prime powers # order by smallest prime then largest exponent local p1,p2; p1:=FactorsInt(q1)[1]; p2:=FactorsInt(q2)[1]; if p1<>p2 then return p1q2; fi; end; # # The function "ElemDivs" computes the elementary divisors of U(n), # in the order given by the function "orderpp" above. # It computes the elementary divisors of U(q) for the # prime power factors q of n and concatenate. # If q is even then ElemDivs = [], [2], or [q/4,2] according as q=2, 4, or >4. # If q is odd then ElemDivs is the list of prime power factors of Phi(q). # Finally sort the list using the ordering given by "orderpp". # ElemDivs:=function(n) local l,ll,x; l:=ppfi(n); ll:=[]; for x in l do if RemInt(x,2)=0 then if x>2 then Add(ll,2); fi; if x>4 then Add(ll,QuoInt(x,4)); fi; else Append(ll,ppfi(Phi(x))); fi; od; Sort(ll,orderpp); return ll; end; # # The function "InvFacts" computes the invariant factors of U(n), # in decreasing order by divisibility. # It starts with the elementary divisors and combines them in the usual way. # Note that the largest invariant factor is Lambda(n). # isntnull:=function(x) return x<>[]; end; # InvFacts:=function(n) local l,ll,lll,m,x; l:=ElemDivs(n); lll:=[]; while l<>[] do ll:=List(l, x->PrimePowersInt(x)); m:=Size(l); x:=1; while m>=1 do if (m=1) or (ll[m][1]<>ll[m-1][1]) then x:=x*l[m]; l[m]:=[]; fi; m:=m-1; od; Add(lll,x); l:=Filtered(l, isntnull); od; return lll; end; # # The function "eltsoforder" finds the number of elements of order m # in an abelian group where l is the list of cyclic factors in any # direct sum decomposition. See "Primitive Lambda-Roots". # eltsoforder:=function(m,l) local t,x,y,z; x:=0; for t in [1..m] do if RemInt(m,t)=0 then y:=MoebiusMu(QuoInt(m,t)); for z in l do y:=y*GcdInt(t,z); od; x:=x+y; fi; od; return x; end; # # Now the number of PLRs is obtained when l is the list of invariant factors # and m is its first element # NrPLRs:=function(n) local l; l:=InvFacts(n); if n<=2 then return 1; fi; return eltsoforder(l[1],l); end; # # The size of a power class is Phi(Lambda(n)). Dividing by this number gives # the number of power classes of PLRs # NrPCs:=function(n) return QuoInt(NrPLRs(n),Phi(Lambda(n))); end; # # The number of negating PLRs is zero if the Sylow $2$-subgroup is not # homocyclic, and is 1/(2^s-1) of the number of PLRs if it is # homocyclic of rank s. See "Primitive Lambda-Roots". # NrNegatingPLRs:=function(n) local l,s; if n<=2 then return 1; fi; # otherwise l[1] is even l:=ElemDivs(n); s:=0; while Size(l)>=s+1 and RemInt(l[s+1],2)=0 do s:=s+1; od; if l[1]=l[s] then return QuoInt(NrPLRs(n),2^s-1); else return 0; fi; end; # NrNegatingPCs:=function(n) return QuoInt(NrNegatingPLRs(n),Phi(Lambda(n))); end; # # NrFraternities(n) returns the number of fraternities of n # NrFraternities:=function(n) local l,s,e; if n<=2 then return 1; fi; l:=ElemDivs(n); s:=0; while Size(l)>=s+1 and RemInt(l[s+1],2)=0 do s:=s+1; od; if l[1]>2 then return QuoInt(NrPLRs(n), 2^s); else return QuoInt(NrPLRs(n), 2^s-1); fi; end; # # IsPLR(x,n) checks if x is a PLR of n # IsPLR:=function(x,n) return OrderMod(x,n)=Lambda(n); end; # # SmallestPLR(n) does what it says # SmallestPLR:=function(n) local x,m; x:=0; m:=Lambda(n); while OrderMod(x,n)<>m do x:=x+1; od; return x; end; # # PowerClass(x,n) gives the power class of x mod n # PowerClass:=function(x,n) # we assume x is a PLR local l,i; l:=[]; for i in [1..Lambda(n)] do if GcdInt(i,Lambda(n))=1 then Add(l,PowerMod(x,i,n)); fi; od; return Set(l); end; # EPowerClass:=function(x,n) # all powers! local l,i; l:=[]; for i in [1..Lambda(n)] do Add(l,PowerMod(x,i,n)); od; return Set(l); end; # # Produce a list of PLRs by direct checking # PLRs:=function(n) local x,l,m; l:=[]; m:=Lambda(n); for x in [0..n-1] do if OrderMod(x,n)=m then Add(l,x); fi; od; return l; end; # # Code for listing negating PLRs # IsNegatingPLR:=function(x,n) local e; e:=QuoInt(Lambda(n),2); return PowerMod(x,e,n)=n-1; end; # NegatingPLRs:=function(n) local e; e:=QuoInt(Lambda(n),2); return Filtered(PLRs(n), x->PowerMod(x,e,n)=n-1); end; # # Code for listing inward PLRs # IsInwardPLR:=function(x,n) return GcdInt(x-1,n)=1; end; # InwardPLRs:=function(n) return Filtered(PLRs(n), x->GcdInt(x-1,n)=1); end; # NrInwardPLRs:=function(n); return Size(InwardPLRs(n)); end; # NrInwardPCs:=function(n); return QuoInt(NrInwardPLRs(n),Phi(Lambda(n))); end; # # Code for strong PLRs # IsStrongPLR:=function(x,n) return IsInwardPLR(x,n) and not IsNegatingPLR(x,n); end; # StrongPLRs:=function(n) local e; e:=QuoInt(Lambda(n),2); return Filtered(InwardPLRs(n),x->PowerMod(x,e,n)<>n-1); end; # NrStrongPLRs:=function(n) return Size(StrongPLRs(n)); end; # NrStrongPCs:=function(n) return QuoInt(NrStrongPLRs(n),Phi(Lambda(n))); end; # # Code for self-seeking PLRs # IsSelfSeekingPLR:=function(x,n) local l; l:=EPowerClass(x,n); return (IsStrongPLR(x,n) and ((x-1 in l) or (n+1-x in l))); end; # SelfSeekingPLRs:=function(n) return Filtered(StrongPLRs(n),x->IsSelfSeekingPLR(x,n)); end; # # "SubofUnits" returns the subgroup of U(n) generated by l # SubofUnits:=function(l,n) local R,U,x; for x in l do if GcdInt(x,n)<>1 then return fail; fi; od; R:=ZmodnZ(n); U:=Units(R); return Subgroup(U,List(l,x->ZmodnZObj(x,n))); end; # ListSubofUnits:=function(l,n) local ll; ll:=SubofUnits(l,n); if ll=fail then return fail; fi; return Set(List(Set(ll), x-> Int(x))); end; # NrSubofUnits:=function(l,n) local ll; ll:=SubofUnits(l,n); if ll=fail then return fail; fi; return Size(ll); end;