
Solutions to Exercises
Chapter 2: On numbers and counting

1 Criticise the following proof that 1 is the largest natural number.

Let n be the largest natural number, and suppose than n 6= 1. Then
n> 1, and so n2 > n; thus n is not the largest natural number.

Of course, the flaw is the assumption that there is a largest natural number.
The argument shows that, if a largest natural number exists, then it must be equal
to 1. But, since 1 is not the largest natural number, it follows that no largest natural
number can exist.

Now, on page 36 (or page 188), you will find a proof that a finite ordered set
has a largest element. So this is a rather roundabout proof that there are infinitely
many natural numbers!

2 Prove by induction that the Odometer Principle with baseb does indeed give
the representationxn−1 . . .x1x0 for the natural number

N = xn−1bn−1 + · · ·+x1b+x0.

The induction begins because thedigit 1 does represent thenumber1.
Now suppose that the digit stringxn−1 . . .x1x0 does represent the numberN =

xn−1bn−1 + · · ·+x1b+x0. Let mbe the largest number such thatxi = b−1 for all
i ≤m−1.

If m 6= n, thenxm 6= b−1, and so the next string produced by the odometer
is xn−1 . . .ym00. . .0, whereym is the digit followingxm in sequence (that is,ym =
xm+1). And

N +1 = xn−1bn−1 + · · ·+xmbm+(b−1)(bm−1 + · · ·+1)+1

= xn−1bn−1 + · · ·+(xm+1)bm,

which is the number represented by the new string. (We used the fact that the sum
of the geometric progressionbm−1 + · · ·+b+1 is equal to(bm−1)/(b−1).)

Similarly, if m = n, then the old odometer string consists of the digitb− 1
repeatedn times, and the new string is 1 followed byn 0s. We have

N +1 = (b−1)(bn−1 + · · ·+1) = bn,

as required.
So the induction step goes through in either case.
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3 (a) Prove by induction that

n! >
(n

e

)n

for n≥ 1. (You may use the fact that(1+ 1
n)n < e for alln.)

(b) Use the arithmetic–geometric mean inequality to show thatn! <
(

n+1
2

)n
for n> 1, and deduce that

n! < e
(n

2

)n

for n≥ 1.

(a) Clearly 1!= 1> 1/e. Suppose thatn! > (n/e)n. Then

(n+1)! > (n+1)
(n

e

)n

=
(

n+1
e

)n+1

·
(

e
(1+1/n)n

)
>

(
n+1

e

)n+1

,

where in the last line we used the given fact. So the induction goes through.
The fact can be proved using the Binomial Theorem (page 25) and the Taylor

series for ex (page 54) as follows:(
1+

1
n

)n

= 1+
1
1!

+
1
2!

(
1− 1

n

)
+

1
3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

< 1+
1
1!

+
1
2!

+
1
3!

+ · · ·
= e.

(b) The geometric mean of the numbers 1,2, . . . ,n is thenth root of their prod-
uct, that is,(n!)1/n; their arithmetic mean is their sum divided byn, which is
1
2n(n+ 1)/n = (n+ 1)/2. So the AM-GM inequality gives us thatn! < ((n+
1)/2)n.

Since(n+1)n = nn(1+ 1
n)n < enn, the final result follows.

The proof of the AM-GM inequality goes as follows. Letx1, . . . ,xn be positive
numbers. Suppose first thatx1 = . . .= xn−1 = a, whilexn = x. Then the arithmetic
and geometric means are equal to((n−1)a+ x)/n and(an−1x)1/n respectively;
so we have to prove thatf (x) = (((n− 1)a+ x)/n)n− an−1x≥ 0. This clearly
holds whenx = a. Also, we havef ′(x) = (((n−1)a+ x)/n)n−1−an−1, which is
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negative forx< a and positive forx> a. (If x< a, then(n−1)a+ x< na, and
similarly if x> a.) So f (x) has a minimum whenx = a, and thusf (x)≥ 0 for all
x> 0.

Now let r of thexi be equal, sayx1 = . . . = xr 6= xr+1. By replacing the ele-
mentsx1, . . . ,xr+1 by their arithmetic mean repeatedr +1 times, we don’t change
the arithmetic mean of then numbers, but we increase the geometric mean (by
the argument in the preceding paragraph). Continue in this way until all then
numbers are equal. Then their AM and GM are equal. But the AM has not been
changed, while the GM has been increased. So the AM of the original set must
have been at least as big as the GM.

4 (a) Prove that logx grows more slowly thanxc for any positive numberc.
(b) Prove that, for anyc,d> 1, we havecx > xd for all sufficiently largex.

(b) We modify the argument on page 12. We may assume thatd is a positive
integer (otherwise, just round it up to the next integer). Now

cx = exlogc≥ (xlogc)d+1

(d+1)!
≥ xd

as long asx≥ (d+1)!/(logc)d+1.
(a) Puttingy = xc, we have to show that logy1/c grows more slowly thaty, that

is, thaty1/c grows more slowly than ey. This is a special case of (b).

5 (a) We saw that there are 223
= 256 labelled families of subsets of a 3-set.

How many unlabelled families are there?
(b) Prove that the numberF(n) of unlabelled families of subsets of ann-set

satisfies log2F(n) = 2n +O(nlogn).

(a) Let{1,2,3} be the 3-set. A family may include the empty set, or not; and
it may include{1,2,3}, or not. So we count the number of families made up of
1-sets and 2-sets only, and multiply by 4.

If there are no 1-sets, or all possible 1-sets, then the points 1,2,3 are all alike
as far as 1-sets go, and so the 4 possible shapes for the 2-sets (shown on page 15)
determine everything. On the other hand, if there are one or two 1-sets, then
one point is different from the other two, so instead of four there are six possible
shapes for the 2-sets. (With one 2-set, it may contain the special point or not; with
two, the special point may lie in both or in just one). So there are 4+4+6+6= 20
configurations for the 1-sets and 2-sets, and 80 families of sets altogether.

(b) We have 22
n
/nn ≤ 22n

/n! ≤ F(n) ≤ 22n
(see page 15). So 2n−nlog2n≤

log2F(n)≤ 2n, from which the result follows.
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6 Verify that the numbers of graphs are given in Table 2.1 forn≤ 5.

n 2 3 4 5
labelled 2 8 64 1024

unlabelled 2 4 11 34

Table 2.1. Graphs

For labelled graphs on 2,3,4,5 vertices, there are 1,3,6,10 pairs of vertices,
and for each pair we have to decide whether to join or not; these choices specify
the graph completely. So there are 21 = 2, 23 = 8, 26 = 64, 210 = 1024 labelled
graphs in the four cases.

For unlabelled graphs, try to write down all the possibilities: see page 15 for
the casen= 3. In Chapter 15, you will see a less error-prone method; the value for
n = 4 is computed on page 253. Drawings of the graphs on at most four vertices
appear in N. J. A. Sloane and S. Plouffe,The Encyclopedia of Integer Sequences,
Academic Press, 1995, Figure M1253, available online here.

7 Suppose that an urn contains four balls with different colours. In how many
ways can three balls be chosen? As in the text, we may be interested in the order
of choice, or not; and we may return balls to the urn, allowing repetitions, or not.
Verify the results of Table 2.2.

order
important

order
unimportant

repetition
allowed 64 20

repetition
not allowed 24 4

Table 2.2. Selections

Consider first the case where order is important. If repetitions are allowed,
then each of the three balls chosen can have any of the four colours, giving 4·4 ·
4 = 64 possibilities. If repetitions are not allowed, there are still 4 possibilities for
the first ball, but only 3 for the second and 2 for the third, total 4·3·3 = 24.

If order is not important, all three balls could be the same colour (four possibil-
ities); or two of one colour and one of another (4·3 = 12 possibilities, since there
are four choices for the repeated colour and then three for the other colour); or
all different (four possibilities, since the one missing colour determines the other
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three). Thus there are 20 selections, of which 4 have no repetitions.

8 A Boolean functiontakesn arguments, each of which can have the valueTRUE

or FALSE. The function takes the valueTRUE or FALSE for each choice of values
of its arguments. Prove that there are 22n

different Boolean functions. Why is
this the same as the number of families of sets?

Let x1, . . . ,xn be then arguments. There are two choices for the value of each,
and hence 2n for the number of different “inputs”. For each input the function
takes one of two possible values. The values on the different inputs specify the
function. So there are 2(2n) different functions.

Let X = {1,2, . . . ,n}. An input to the function can be regarded as the charac-
teristic function of a subsetY of X (the set of valuesi for whichxi takes the value
TRUE). Now we have specified the function if we know which sets correspond
to inputs giving the function the value TRUE. Thus a family of sets specifies a
function, andvice versa.

9 Logicians define a natural number to be the set of all its predecessors: so 3 is
the set{0,1,2}. Why do they have to start counting at 0?

Suppose that we start counting at 1 instead of 0. Either we define 3 to be the
set ofstrict predecessors of 3, in which case there are only two of them (1 and
2); or we allow non-strict predecessors, in which case 3 is a member of itself,
which leaves us vulnerable toRussell’s paradoxabout the set of sets which are
not members of themselves (see page 308).

10 A function f haspolynomial growthof degreed if there exist positive real
numbersa andb such thatand < f (n)< bnd for all sufficiently largen. Suppose
that f has polynomial growth, andg has exponential growth with exponential
constant greater than 1 (as defined in the text). Prove thatf (n) < g(n) for all
sufficiently largen. If f (n) = 106n106

and g(n) = (1.000001)n, how large is
‘sufficiently large’?

The first part is similar to Question 4.
For the second part,n = 1014 suffices. For we have

g(1014) = (1.000001)1014
≥ 1+1014 · (0.000001)> 108,

the first inequality by the Binomial Theorem; whereas

f (1014) = 106 ·1014×106
= 100.14000006×108

.
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11 Let B be a set of subsets of the set{1,2, . . . ,v}, containing exactlyb sets.
Suppose that

• every set inB contains exactlyk elements;

• for i = 1,2, . . . ,v, the elementi is contained in exactlyr members ofB.

Prove thatbk= vr.
Give an example of such a system, withv = 6, k = 3, b = 4, r = 2.

This exercise uses the double counting principle. So letB = {B1, . . . ,Bb},
and letA = {1, . . . ,v} andB = {1, . . . ,b}; let Sbe the set of pairs(i, j) for which
i ∈ B j . Then every member ofA is in r pairs inS, whereas every member ofB is
in k such pairs. Sobk= vr by (2.6.2).

An example isB = {123,145,246,356}, where 123 is short for{1,2,3}, and
so on.

6



12 The ‘Russian peasant algorithm’ for multiplying two natural numbersmand
n works as follows.

(2.7.3) Russian peasant multiplication
to multiply two natural numbers m and n

• Write m andn at the head of two columns.

• REPEAT the sequence

– halve the last number in the first column (discarding the
remainder) and write it under this number;

– double the last number in the second column and write it
under this number;

UNTIL the last number in the first column is 1.

For each even number in the first column, delete the adjacent en-
try in the second column. Now add the remaining numbers in the
second column. Their sum is the answer.

Problems

(i) Prove that this method gives the right answer.

(ii) What is the connection with the primary school method of long multiplica-
tion?

(iii) Suppose we change the algorithm by squaring (instead of doubling) the
numbers in the second column, and, in the last step, multiplying (rather
than adding) the undeleted numbers. Prove that the number calculated is
nm. How many multiplications does this method require?

(i) Write m to base 2:m= a0 + a12+ a222 + . . .+ ar2r , where eachai is zero
or one. Counting the first row as number 0, theith number in the first column
is ai + ai+12+ . . .+ ar2r−i , and in the second column 2i ·n. So the rows which
remain after the deletions are those for whichai = 1, and the final total is

∑
ai=1

2i ·n =
r

∑
i=0

ai2
i ·n = m·n,

as required.
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(ii) Suppose that we do the long multiplicationn×m in base 2. (Note the
changed order!) Nowm is given by the digit sequencear . . .a1a0. If ai = 0, we
ignore it; if ai = 1, we shiftm left i places (which has the effect of multiplying it
by 2i), multiply it by 1 (which doesn’t change it), and write it down. Now we add
up all these numbers, which clearly gives exactly the same sum as before.

(iii) With these changes, the number in theith row and second column isn2i
,

and the final answer is

∏
ai=1

n2i
=

r

∏
i=0

nai2i
= nm.

We have used only 2r multiplications, wherer = dlog2me, as opposed to them−1
multiplications required by the simple-minded method.

13 According to the Buddha,

Scholars speak in sixteen ways of the state of the soul after death.
They say that it has form or is formless; has and has not form, or nei-
ther has nor has not form; it is finite or infinite; or both or neither;
it has one mode of consciousness or several; has limited conscious-
ness or infinite; is happy or miserable; or both or neither.

How many different possible descriptions of the state of the soul after death do
you recognise here?

One could argue here that the numbers of choices should be multiplied, not
added; there are 4 choices for form, 4 for finiteness, 2 for modes of consciousness,
2 for finiteness of consciousness, and 4 for happiness, total 28 = 256. (You may
wish to consider whether all 256 are really possible.)

14 The library of Babel (Jorge Luis Borges,Labyrinths, 1964) consists of inter-
connecting hexagonal rooms. Each room contains twenty shelves, with thirty-
five books of uniform format on each shelf. A book has four hundred and ten
pages, with forty lines to a page, and eighty characters on a line, taken from
an alphabet of twenty-five orthographical symbols (twenty-two letters, comma,
period and space). Assuming that one copy of every possible book is kept in the
library, how many rooms are there?

Each book is made up of 410·40·80= 1312000 characters chosen from a set
of 25, so there are 251312000different books. Each room of the library contains 20·
35= 700 books. So there are 251312000/700 rooms. This number is approximately
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2.794× 101834094. (By comparison, the number of elementary particles in the
universe is thought to be around 1080.)

The text of Borges’ story and a picture of the Library of Babel are available
here. Further discussion can be found here.
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