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Sylow’s proof
A complete proof of Sylow’s Theorems can be found on page 19 of the revision notes.
Below is Sylow’s original proof of the first part of his theorem, the existence of Sylow
subgroups. He wrote it in the language of double cosets; I have translated it into group
actions.

Recall that a Sylow p-subgroup of a finite group G is a subgroup whose order is a
power of p and whose index is coprime to p.

Theorem 1 For any prime p, every finite group has a Sylow p-subgroup.

Proof We proceed in four steps. The first is the “big idea”.

Step 1 If G is a subgroup of a group H, and H has a Sylow p-subgroup, then G has
a Sylow p-subgroup.

For let P be a Sylow p-subgroup of H, and consider the action of H on the coset
space cos(P,H) by right multiplication. The number of cosets is coprime to p, and the
stabiliser of any coset has p-power order.

Now restrict the action to G. There must be an orbit ∆ whose size is coprime to
p, since if all orbits sizes were divisible by p then the total number of cosets would
be divisible by p. The stabiliser of a point of ∆ (in G) has p-power order, since it is a
subgroup of the stabiliser in H. So this stabiliser is a Sylow p-subgroup.

Step 2 A finite group G of order n is isomorphic to a subgroup of the symmetric
group Sn.

This is Cayley’s Theorem. Consider the action of G on the coset space cos(G,1):
this action is faithful (since the stabiliser of any point is trivial), and so it is an embed-
ding of G in Sn.
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Step 3 There is an embedding of Sn in the general linear group GL(n,F) of invertible
n×n matrices over any field F .

The embedding maps any permutation g to the permutation matrix P(g), whose
i, j entry is given by

P(g)i j =
{

1, if ig = j,
0, otherwise.

Step 4 Let F be the field of integers mod p, where p is prime. Then GL(n,F) has a
Sylow p-subgroup.

To see this, we first compute the order of GL(n, p) to be

(pn−1)(pn− p) · · ·(pn− pn−1) = p1+2+···+(n−1)M,

where M is not divisible by p. Now the upper unitriangular matrices (with 1 on the
diagonal, arbitrary elements above, and 0 below) has order p1+2+···+(n−1), so is a
Sylow p-subgroup.

Putting the four parts together proves the theorem.

Remark It is possible to save a step by showing directly that the symmetric group
Sn possesses a Sylow p-subgroup; but this is a bit more complicated.
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