
MTHM024/MTH714U Group Theory

Problem Sheet 7 Solutions

1 We have G = S3×S3, and A = S3×{1}= {(g,1) : g ∈ S3}.
One complement is H1 = {1}× S3 = {(1,g) : g ∈ S3}. It is clear that this is a

complement. Moreover, H1 commutes with A, so the action φ1 of H1 on A is trivial;
the semidirect product A oφ H1 is just the direct product A×H1.

Another complement is the diagonal subgroup

H2 = {(g,g) : g ∈ S3}.

(We have (g,h)∈A∩H2 ⇒ h = 1 and g = h, so A∩H2 = {1}; and similarly AH2 = G.)
The action φ2 of H2 on A is the usual conjugation action of S3 on itself, since

(g,g)−1(x,1)(g,g) = (g−1xg,1).

Remark: Since Aut(S3) is isomorphic to S3, the semidirect product in the second
case is the holomorph of S3. So this holomorph is isomorphic to S3×S3.

2 (a) Suppose that G is complete. Then Out(G) = {1}, so

Aut(G) = Inn(G)∼= G/Z(G)∼= G,

the last isomorphism holding because also Z(G) = {1}.

(b) As in the first question, let A be the first direct factor in G×G, let H1 be the
second direct factor, and let H2 be the diagonal subgroup {(g,g) : g ∈ G}. Then each
of H1 and H2 is a complement to A, so G×G∼= AoH1 ∼= AoH2; each of A, H1 and H2
is isomorphic to G, but the homomorphism φ1 : H1 → Aut(A) is trivial (since the two
direct factors commute) while the homomorphism φ2 : H2 → Aut(A) is the identity
map.

(c) It is trivial that Z(Sn) = {1} for n ≥ 3. Also we showed in lectures that
Out(Sn) = {1} for n≥ 3, n 6= 6. So for these values of n, Sn is complete.
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(d) An example of such a group is the dihedral group D8. It is generated by two
elements g and h satisfying g4 = 1, h2 = 1, h−1gh = g−1. It can be checked that the
eight maps which send g 7→ ga and h 7→ hgb (for a = ±1, b = 0,1,2,3) each extend
to automorphisms of G; and these are the only possibilities, since g must map to an
element of order 4, and h to an element of order 2 which is not a power of g. Moreover,
if s : g 7→ g,h 7→ hg and t : g 7→ g−1,h 7→ h, then it can be checked that s4 = 1, t2 = 1,
and t−1st = s−1. So s and t generate a dihedral group of order 8.

But D8 is not complete since |Z(D8)|= 2.

3 A group G is soluble if it has a chain of subgroups

G = G0 BG1 B · · ·BGr−1 BGr = {1}

with Gi normal in G and Gi−1/Gi abelian for i = 1, . . . ,r.
(a) Since a cyclic group of prime order is abelian, a supersoluble group satisfies

the condition to be soluble.
An example of a soluble group which is not supersoluble is A4. Its only normal

subgroups are A4, V4 and {1}, so the only possible series of normal subgroups consists
of these three; and V4 is abelian but not cyclic.

(b) Since a subgroup of the centre of a group is abelian and normal in the group, it
is also clear that a nilpotent group satisfies the condition to be soluble.

An example of a soluble group which is not nilpotent is S3. For the centre of a
non-trivial nilpotent group is non-trivial, but Z(S3) = {1}.

(c) Let |G| = pn. We prove G nilpotent by induction on n. The result is clear if
n = 0. If n > 0, then Z(G) 6= {1}, and G/Z(G) has order pm for some m < n. By the
induction hypothesis, G/Z(G) has a central series; the subgroups of G corresponding
to it (using the Correspondence Theorem) together with Z(G) form a central series for
G.

4 (a) AGL(n,2) is generated by the translations of V = Fn
2 and the invertible linear

maps. The translation group acts transitively, so it suffices to show that the stabiliser
of the zero vector (which is GL(n,2)) is doubly transitive.

Now, over F2, any two non-zero vectors are linearly independent (the only possible
linear combination would be v1 + v2 = 0, implying that v1 = v2), so can be extended
to a basis; and we can carry any basis to any other by an element of the general linear
group. So GL(n,2) is doubly transitive, as required.

(b) AGL(2,2) has order 4|GL(2,2)| = 4 · 6 = 24, and acts on the four vectors of
F2

2, so is a subgroup of S4. So AGL(2,2)∼= S4.
(c) AGL(3,2) acts on the eight points of F3

2, so is a subgroup of S8. We need to
show it is contained in A8, that is, consists of even permutations. The translations are
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products of four 2-cycles, so are even permutations. For the elements of GL(3,2),
either do this directly, or use the fact that if it were not so then A8∩GL(3,2) would be
a subgroup of index 2 in GL(3,2), hence normal, contradicting the simplicity of this
group.

Now the index is 1
2 8!/(8 ·168) = 15.

(d) The action of A8 on the fifteen cosets of AGL(3,2) is transitive. So we have to
show that AGL(3,2) is transitive on the other 14 cosets.

This group contains a Sylow 7-subgroup, which has order 7 and is generated by a
product of two 7-cycles. (The only alternative would be that the generator is a single
7-cycle; then the Sylow 7-subgroup would lie in eight conjugates of AGL(3,2), which
is not possible.) So if the conclusion is false, then AGL(3,2) itself would have two
orbits of size 7. Pick one of these orbits and count the ordered pairs (α,β ) where β

lies in the specified orbit of the stabiliser of α; there are 105 such pairs. Since 105 is
odd, these pairs cannot be interchanged by an element of A8. But an element of order
2 in A8 must interchange some pair of points, a contradiction.

An alternative argument would be that, if AGL(3,2) acts on 7 points, the transla-
tion group must act trivially; and it cannot act trivially on the whole set since A8 is
simple. Thus not all orbits can have size 7 (or 1).
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