University of London

MTHM024/MTH714U

Group Theory

Problem Sheet 7
 Solutions

1 We have $G=S_{3} \times S_{3}$, and $A=S_{3} \times\{1\}=\left\{(g, 1): g \in S_{3}\right\}$.
One complement is $H_{1}=\{1\} \times S_{3}=\left\{(1, g): g \in S_{3}\right\}$. It is clear that this is a complement. Moreover, H_{1} commutes with A, so the action ϕ_{1} of H_{1} on A is trivial; the semidirect product $A \rtimes_{\phi} H_{1}$ is just the direct product $A \times H_{1}$.

Another complement is the diagonal subgroup

$$
H_{2}=\left\{(g, g): g \in S_{3}\right\} .
$$

(We have $(g, h) \in A \cap H_{2} \Rightarrow h=1$ and $g=h$, so $A \cap H_{2}=\{1\}$; and similarly $A H_{2}=G$.) The action ϕ_{2} of H_{2} on A is the usual conjugation action of S_{3} on itself, since

$$
(g, g)^{-1}(x, 1)(g, g)=\left(g^{-1} x g, 1\right) .
$$

Remark: Since $\operatorname{Aut}\left(S_{3}\right)$ is isomorphic to S_{3}, the semidirect product in the second case is the holomorph of S_{3}. So this holomorph is isomorphic to $S_{3} \times S_{3}$.

2 (a) Suppose that G is complete. Then $\operatorname{Out}(G)=\{1\}$, so

$$
\operatorname{Aut}(G)=\operatorname{Inn}(G) \cong G / Z(G) \cong G,
$$

the last isomorphism holding because also $Z(G)=\{1\}$.
(b) As in the first question, let A be the first direct factor in $G \times G$, let H_{1} be the second direct factor, and let H_{2} be the diagonal subgroup $\{(g, g): g \in G\}$. Then each of H_{1} and H_{2} is a complement to A, so $G \times G \cong A \rtimes H_{1} \cong A \rtimes H_{2}$; each of A, H_{1} and H_{2} is isomorphic to G, but the homomorphism $\phi_{1}: H_{1} \rightarrow \operatorname{Aut}(A)$ is trivial (since the two direct factors commute) while the homomorphism $\phi_{2}: H_{2} \rightarrow \operatorname{Aut}(A)$ is the identity map.
(c) It is trivial that $Z\left(S_{n}\right)=\{1\}$ for $n \geq 3$. Also we showed in lectures that $\operatorname{Out}\left(S_{n}\right)=\{1\}$ for $n \geq 3, n \neq 6$. So for these values of n, S_{n} is complete.
(d) An example of such a group is the dihedral group D_{8}. It is generated by two elements g and h satisfying $g^{4}=1, h^{2}=1, h^{-1} g h=g^{-1}$. It can be checked that the eight maps which send $g \mapsto g^{a}$ and $h \mapsto h g^{b}$ (for $a= \pm 1, b=0,1,2,3$) each extend to automorphisms of G; and these are the only possibilities, since g must map to an element of order 4 , and h to an element of order 2 which is not a power of g. Moreover, if $s: g \mapsto g, h \mapsto h g$ and $t: g \mapsto g^{-1}, h \mapsto h$, then it can be checked that $s^{4}=1, t^{2}=1$, and $t^{-1} s t=s^{-1}$. So s and t generate a dihedral group of order 8 .

But D_{8} is not complete since $\left|Z\left(D_{8}\right)\right|=2$.
3 A group G is soluble if it has a chain of subgroups

$$
G=G_{0} \triangleright G_{1} \triangleright \cdots \triangleright G_{r-1} \triangleright G_{r}=\{1\}
$$

with G_{i} normal in G and G_{i-1} / G_{i} abelian for $i=1, \ldots, r$.
(a) Since a cyclic group of prime order is abelian, a supersoluble group satisfies the condition to be soluble.

An example of a soluble group which is not supersoluble is A_{4}. Its only normal subgroups are A_{4}, V_{4} and $\{1\}$, so the only possible series of normal subgroups consists of these three; and V_{4} is abelian but not cyclic.
(b) Since a subgroup of the centre of a group is abelian and normal in the group, it is also clear that a nilpotent group satisfies the condition to be soluble.

An example of a soluble group which is not nilpotent is S_{3}. For the centre of a non-trivial nilpotent group is non-trivial, but $Z\left(S_{3}\right)=\{1\}$.
(c) Let $|G|=p^{n}$. We prove G nilpotent by induction on n. The result is clear if $n=0$. If $n>0$, then $Z(G) \neq\{1\}$, and $G / Z(G)$ has order p^{m} for some $m<n$. By the induction hypothesis, $G / Z(G)$ has a central series; the subgroups of G corresponding to it (using the Correspondence Theorem) together with $Z(G)$ form a central series for G.

4 (a) $\operatorname{AGL}(n, 2)$ is generated by the translations of $V=\mathbb{F}_{2}^{n}$ and the invertible linear maps. The translation group acts transitively, so it suffices to show that the stabiliser of the zero vector (which is $\operatorname{GL}(n, 2)$) is doubly transitive.

Now, over \mathbb{F}_{2}, any two non-zero vectors are linearly independent (the only possible linear combination would be $v_{1}+v_{2}=0$, implying that $v_{1}=v_{2}$), so can be extended to a basis; and we can carry any basis to any other by an element of the general linear group. So GL $(n, 2)$ is doubly transitive, as required.
(b) $\operatorname{AGL}(2,2)$ has order $4|\operatorname{GL}(2,2)|=4 \cdot 6=24$, and acts on the four vectors of \mathbb{F}_{2}^{2}, so is a subgroup of S_{4}. So $\operatorname{AGL}(2,2) \cong S_{4}$.
(c) $\operatorname{AGL}(3,2)$ acts on the eight points of \mathbb{F}_{2}^{3}, so is a subgroup of S_{8}. We need to show it is contained in A_{8}, that is, consists of even permutations. The translations are
products of four 2-cycles, so are even permutations. For the elements of $\operatorname{GL}(3,2)$, either do this directly, or use the fact that if it were not so then $A_{8} \cap \mathrm{GL}(3,2)$ would be a subgroup of index 2 in $\operatorname{GL}(3,2)$, hence normal, contradicting the simplicity of this group.

Now the index is $\frac{1}{2} 8!/(8 \cdot 168)=15$.
(d) The action of A_{8} on the fifteen cosets of $\operatorname{AGL}(3,2)$ is transitive. So we have to show that $\operatorname{AGL}(3,2)$ is transitive on the other 14 cosets.

This group contains a Sylow 7 -subgroup, which has order 7 and is generated by a product of two 7-cycles. (The only alternative would be that the generator is a single 7-cycle; then the Sylow 7-subgroup would lie in eight conjugates of AGL (3,2), which is not possible.) So if the conclusion is false, then $\operatorname{AGL}(3,2)$ itself would have two orbits of size 7. Pick one of these orbits and count the ordered pairs (α, β) where β lies in the specified orbit of the stabiliser of α; there are 105 such pairs. Since 105 is odd, these pairs cannot be interchanged by an element of A_{8}. But an element of order 2 in A_{8} must interchange some pair of points, a contradiction.

An alternative argument would be that, if $\operatorname{AGL}(3,2)$ acts on 7 points, the translation group must act trivially; and it cannot act trivially on the whole set since A_{8} is simple. Thus not all orbits can have size 7 (or 1).

