

MTHM024/MTH714U

Group Theory

Problem Sheet 5

Solutions

1 (a) We construct \mathbb{F}_8 by adjoining to $\mathbb{F}_2 = \mathbb{Z}_2$ the root of an irreducible cubic polynomial f(x).

The reason for this is that, if f is irreducible, then the ideal $\langle f \rangle$ of the polynomial ring $\mathbb{F}_2[x]$ generated by f is maximal, and hence the quotient ring $\mathbb{F}_2[x]/\langle f \rangle$ is a field (see Algebraic Structures II notes). Now the Division algorithm shows that, if p is any polynomial over \mathbb{F}_2 , then we can write p(x) = f(x)q(x) + r(x), where deg $(r) < \deg(f) = 3$, so r belongs to the coset $\langle f \rangle + p$. Thus every coset contains a representative of degree less than 3. It is easy to see that this coset representative is unique. The number of polynomials of degree less than 3 is $2^3 = 8$ (since $ax^2 + bx + c$ has three coefficients each of which can be any element of \mathbb{F}_2). So there are 8 cosets of $\langle f \rangle$ in $\mathbb{F}_2[x]$, and the quotient is a field with 8 elements.

We note in passing that, if we use the symbols $0, 1, \alpha$ to denote the cosets $\langle f \rangle$, $\langle f \rangle + 1$ and $\langle f \rangle + x$ respectively, then $f(\alpha) = \langle f \rangle + f(x) = \langle f \rangle = 0$. Thus α is a root of f.

There are eight polynomials of degree 3 over \mathbb{F}_2 . If f is an irreducible polynomial of degree 3, then f(0) = 1 (since if f(0) = 0 then x is a factor of f(x)), and f(1) = 1 (since if f(1) = 0 then x + 1 is a factor of f(x)). This leaves just the two irreducible polynomials $f(x) = x^3 + x + 1$ and $g(x) = x^3 + x^2 + 1$.

Now take the polynomial f. The eight elements of our field are $a\alpha^2 + b\alpha + c$, where $a, b, c \in \mathbb{F}_2$ and $\alpha^3 + \alpha + 1 = 0$. Addition is straightforward: to add two expressions of this form, we simply add the coefficients of α^2 , the coefficients of α , and the constant terms. For example, $(\alpha^2 + 1) + (\alpha^2 + \alpha) = \alpha + 1$.

Multiplication can be done by multiplying in the usual way and using the fact that $\alpha^3 = \alpha + 1$ to reduce the degree of the product. A more user-friendly way to multiply

is to use "logarithms". We construct a table of powers of α :

α^0					1
α^1			α		
α^2	α^2				
α^3			α	+	1
α^4	α^2	+	α		
α^{5}	α^2	+	α	+	1
α^{6}	α^2			+	1

and $\alpha^7 = 1 = \alpha^0$. So the multiplicative group is cyclic of order 7, in agreement with what we know.

Now to multiply two elements, use the table to express them as powers of α , add the exponents mod 7, and use the table in reverse to express the result in the standard form. For example,

$$(\alpha^2+1)(\alpha^2+\alpha)=\alpha^6\cdot\alpha^4=\alpha^{10}=\alpha^3=\alpha+1.$$

(b) Let $\beta = \alpha^3$. (Why this choice? Trial and error – see below.) Then

$$\beta^3 + \beta^2 + 1 = \alpha^9 + \alpha^6 + 1 = \alpha^2 + (\alpha^2 + 1) + 1 = 0,$$

so β is a root of the other irreducible polynomial g. So the field we construct already contains a root of g, and thus is the field obtained by adjoining such a root to \mathbb{F}_2 . So the two irreducible polynomials give the same field.

If you try $\gamma = \alpha^2$, you will find that $f(\gamma) = 0$, so γ is a root of the same irreducible polynomial as is α . In fact, this agrees with our observation that the *Frobenius map* $u \mapsto u^2$ is an automorphism of \mathbb{F}_8 . Similarly, α^4 , the result of applying the Frobenius map twice, will also satisfy f. The other two elements $\alpha^6 = (\alpha^3)^2$ and $\alpha^5 = (\alpha^3)^4$ are roots of g.

2 (a) The following are equivalent (for $g \in G$):

- Hg is fixed by H,
- (Hg)h = Hg for all $h \in H$,
- $Hghg^{-1} = H$ for all $h \in H$,
- $ghg^{-1} \in H$ for all $h \in H$,
- $gHg^{-1} = H$,

• $g^{-1}Hg = H$.

(b) Let $H = p^k$. Then the coset space cos(H, G) has size p^{n-k} , a multiple of p (since H < G). Now consider the action restricted to H, and split cos(H, G) into orbits. By the Orbit-Stabiliser Theorem, the size of each orbit is a power of p; and at least one orbit (namely $\{H\}$) has size $1 = p^0$. So there must be at least p orbits of size 1; that is, at least p cosets of H lie in $N_G(H)$, by (a). So $N_G(H) > H$.

3 The first part asks, which matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfy $A^2 = I$ and det(A) = 1? We have $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = A$; so b = -b, c = -c, a = d. Since the characteristic of the field is not 2, we conclude that b = c = 0 and A = aI. Then $a^2 = 1$, so a = -1, as required.

(a) PSL(2, F) contains an involution; indeed, it is easy to see that it contains more than one involution. (For example, thinking of it as the group of linear fractional transformations, $z \mapsto -a^2 z$ is an involution for any non-zero $a \in F$, so if |F| > 3 there is more than one such element. The case |F| = 3 can be handled directly.) So it cannot be a subgroup of a group with only one involution. [An *involution* is an element of order 2.]

(b) Since the composition factors are C_2 and PSL(2,q), and there is no subgroup (normal or otherwise) isomorphic to PSL(2,q), the composition series must be $G \triangleright H \triangleright \{1\}$, where $H \cong C_2$. By the first part of the question, there is only one such subgroup H, namely $\{\pm I\}$.

(c) Immediate from (a) (or (b)).

4 (a) First observe that a conjugate of a *p*-th power or a commutator is again a *p*-th power or commutator respectively — we have $(x^p)^g = (x^g)^p$ and $[x,y]^g = [x^g, y^g]$, where $x^g = g^{-1}xg$ and $[x,y] = x^{-1}y^{-1}xy$ [you should check this!]. So conjugation maps the generators of *N* to themselves, and hence fixes *N*. Thus it is a normal subgroup.

For any elements $x, y \in G$, we have $(Nx)^p = Nx^p = N$ and [Nx, Ny] = N[x, y] = N. So G/N is a group in which every *p*-th power and every commutator is the identity, in other words, it is an elementary abelian *p*-group.

(b) Let *K* be a normal subgroup of *G* such that G/K is an elementary abelian *p*-group. Choose any elements $x, y \in G$. Then $(Kx)^p = Kx^p = K$, so $x^p \in K$; and [Kx, Ky] = K[x, y] = K, so $[x, y] \in K$. Thus all the generators of *N* lie in *K*, and so $N \leq K$.

(c) Let *H* be a maximal subgroup of *G*. By Problem 2(b), $N_G(H) > H$. Hence by maximality we have $N_G(H) = G$, that is, $H \triangleleft G$. Now since *H* is a maximal subgroup

of G, G/H is a group whose only subgroups are itself and the identity; so necessarily $G/H \cong C_p$, and |G:H| = p.

(d) Let *H* be a maximal subgroup of *G*. By part (c), $H \triangleleft G$ and $G/H \cong C_p$. Hence by part (b), $N \leq H$. So $N \leq M$, where *M* is the intersection of all maximal subgroups of *G*.

Now G/N is elementary abelian, that is, the additive group of a vector space over \mathbb{F}_p , whose subspaces are subgroups of G/N. According to the Correspondence Theorem, M/N is a subgroup of G/N, hence a subspace of this vector space. Suppose for a contradiction that $M \neq N$. Then $M/N \neq \{0\}$. Choose a subgroup K such that $(M/N) \oplus (K/N) = G/N$ (using the Correspondence Theorem again). This means that, in group terms, MK = G.

By assumption, $K \neq G$. So *K* is contained in a maximal subgroup *H* of *G*. By assumption, $M \leq H$ (since *M* is the intersection of all the maximal subgroups). As $M \leq H$ and $K \leq H$, we have $G = MK \leq H$, which is an obvious contradiction. So necessarily, M = N, as required.

(e) Suppose that Ng_1, \ldots, Ng_r generate G/N, and suppose for a contradiction that g_1, \ldots, g_r don't generate G. The subgroup they do generate is contained in some maximal subgroup H of H. Thus $g_1, \ldots, g_r \in H$. But also $N \leq H$, by part (d). This means that $Ng_1, \ldots, Ng_r \in H/N$, contradicting the fact that they generate G/N. So the assertion is proved.

Remark The subgroup N is called the *Frattini subgroup* of G. The result that the number of generators of G is equal to the dimension of G/N as a vector space over \mathbb{F}_p is called the *Burnside basis theorem*.