
MTHM024/MTH714U Group Theory

Problem Sheet 5 Solutions

1 (a) We construct F8 by adjoining to F2 = Z2 the root of an irreducible cubic poly-
nomial f (x).

The reason for this is that, if f is irreducible, then the ideal 〈 f 〉 of the polyno-
mial ring F2[x] generated by f is maximal, and hence the quotient ring F2[x]/〈 f 〉
is a field (see Algebraic Structures II notes). Now the Division algorithm shows
that, if p is any polynomial over F2, then we can write p(x) = f (x)q(x)+ r(x),
where deg(r) < deg( f ) = 3, so r belongs to the coset 〈 f 〉+ p. Thus every coset
contains a representative of degree less than 3. It is easy to see that this coset
representative is unique. The number of polynomials of degree less than 3 is
23 = 8 (since ax2 + bx + c has three coefficients each of which can be any ele-
ment of F2). So there are 8 cosets of 〈 f 〉 in F2[x], and the quotient is a field with
8 elements.

We note in passing that, if we use the symbols 0,1,α to denote the cosets
〈 f 〉, 〈 f 〉+1 and 〈 f 〉+x respectively, then f (α) = 〈 f 〉+ f (x) = 〈 f 〉= 0. Thus α

is a root of f .

There are eight polynomials of degree 3 over F2. If f is an irreducible polynomial
of degree 3, then f (0) = 1 (since if f (0) = 0 then x is a factor of f (x)), and f (1) = 1
(since if f (1) = 0 then x + 1 is a factor of f (x)). This leaves just the two irreducible
polynomials f (x) = x3 + x+1 and g(x) = x3 + x2 +1.

Now take the polynomial f . The eight elements of our field are aα2 + bα + c,
where a,b,c∈ F2 and α3 +α +1 = 0. Addition is straightforward: to add two expres-
sions of this form, we simply add the coefficients of α2, the coefficients of α , and the
constant terms. For example, (α2 +1)+(α2 +α) = α +1.

Multiplication can be done by multiplying in the usual way and using the fact that
α3 = α +1 to reduce the degree of the product. A more user-friendly way to multiply
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is to use “logarithms”. We construct a table of powers of α:

α0 1
α1 α

α2 α2

α3 α + 1
α4 α2 + α

α5 α2 + α + 1
α6 α2 + 1

and α7 = 1 = α0. So the multiplicative group is cyclic of order 7, in agreement with
what we know.

Now to multiply two elements, use the table to express them as powers of α , add
the exponents mod 7, and use the table in reverse to express the result in the standard
form. For example,

(α2 +1)(α2 +α) = α
6 ·α4 = α

10 = α
3 = α +1.

(b) Let β = α3. (Why this choice? Trial and error – see below.) Then

β
3 +β

2 +1 = α
9 +α

6 +1 = α
2 +(α2 +1)+1 = 0,

so β is a root of the other irreducible polynomial g. So the field we construct already
contains a root of g, and thus is the field obtained by adjoining such a root to F2. So
the two irreducible polynomials give the same field.

If you try γ = α2, you will find that f (γ) = 0, so γ is a root of the same irreducible
polynomial as is α . In fact, this agrees with our observation that the Frobenius map
u 7→ u2 is an automorphism of F8. Similarly, α4, the result of applying the Frobenius
map twice, will also satisfy f . The other two elements α6 = (α3)2 and α5 = (α3)4

are roots of g.

2 (a) The following are equivalent (for g ∈ G):

• Hg is fixed by H,

• (Hg)h = Hg for all h ∈ H,

• Hghg−1 = H for all h ∈ H,

• ghg−1 ∈ H for all h ∈ H,

• gHg−1 = H,
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• g−1Hg = H.

(b) Let H = pk. Then the coset space cos(H,G) has size pn−k, a multiple of p
(since H < G). Now consider the action restricted to H, and split cos(H,G) into
orbits. By the Orbit-Stabiliser Theorem, the size of each orbit is a power of p; and at
least one orbit (namely {H}) has size 1 = p0. So there must be at least p orbits of size
1; that is, at least p cosets of H lie in NG(H), by (a). So NG(H) > H.

3 The first part asks, which matrices A =
(

a b
c d

)
satisfy A2 = I and det(A) = 1? We

have A−1 =
(

d −b
−c a

)
= A; so b = −b, c = −c, a = d. Since the characteristic of

the field is not 2, we conclude that b = c = 0 and A = aI. Then a2 = 1, so a =−1, as
required.

(a) PSL(2,F) contains an involution; indeed, it is easy to see that it contains more
than one involution. (For example, thinking of it as the group of linear fractional
transformations, z 7→ −a2z is an involution for any non-zero a ∈ F , so if |F |> 3 there
is more than one such element. The case |F |= 3 can be handled directly.) So it cannot
be a subgroup of a group with only one involution. [An involution is an element of
order 2.]

(b) Since the composition factors are C2 and PSL(2,q), and there is no subgroup
(normal or otherwise) isomorphic to PSL(2,q), the composition series must be G B
H B {1}, where H ∼= C2. By the first part of the question, there is only one such
subgroup H, namely {±I}.

(c) Immediate from (a) (or (b)).

4 (a) First observe that a conjugate of a p-th power or a commutator is again a p-
th power or commutator respectively — we have (xp)g = (xg)p and [x,y]g = [xg,yg],
where xg = g−1xg and [x,y] = x−1y−1xy [you should check this!]. So conjugation maps
the generators of N to themselves, and hence fixes N. Thus it is a normal subgroup.

For any elements x,y ∈ G, we have (Nx)p = Nxp = N and [Nx,Ny] = N[x,y] = N.
So G/N is a group in which every p-th power and every commutator is the identity, in
other words, it is an elementary abelian p-group.

(b) Let K be a normal subgroup of G such that G/K is an elementary abelian
p-group. Choose any elements x,y ∈ G. Then (Kx)p = Kxp = K, so xp ∈ K; and
[Kx,Ky] = K[x,y] = K, so [x,y] ∈ K. Thus all the generators of N lie in K, and so
N ≤ K.

(c) Let H be a maximal subgroup of G. By Problem 2(b), NG(H) > H. Hence by
maximality we have NG(H) = G, that is, H CG. Now since H is a maximal subgroup
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of G, G/H is a group whose only subgroups are itself and the identity; so necessarily
G/H ∼= Cp, and |G : H|= p.

(d) Let H be a maximal subgroup of G. By part (c), H CG and G/H ∼= Cp. Hence
by part (b), N ≤ H. So N ≤ M, where M is the intersection of all maximal subgroups
of G.

Now G/N is elementary abelian, that is, the additive group of a vector space over
Fp, whose subspaces are subgroups of G/N. According to the Correspondence The-
orem, M/N is a subgroup of G/N, hence a subspace of this vector space. Suppose
for a contradiction that M 6= N. Then M/N 6= {0}. Choose a subgroup K such that
(M/N)⊕(K/N) = G/N (using the Correspondence Theorem again). This means that,
in group terms, MK = G.

By assumption, K 6= G. So K is contained in a maximal subgroup H of G. By
assumption, M ≤ H (since M is the intersection of all the maximal subgroups). As
M ≤ H and K ≤ H, we have G = MK ≤ H, which is an obvious contradiction. So
necessarily, M = N, as required.

(e) Suppose that Ng1, . . . ,Ngr generate G/N, and suppose for a contradiction that
g1, . . . ,gr don’t generate G. The subgroup they do generate is contained in some max-
imal subgroup H of H. Thus g1, . . . ,gr ∈ H. But also N ≤ H, by part (d). This
means that Ng1, . . . ,Ngr ∈H/N, contradicting the fact that they generate G/N. So the
assertion is proved.

Remark The subgroup N is called the Frattini subgroup of G. The result that the
number of generators of G is equal to the dimension of G/N as a vector space over Fp
is called the Burnside basis theorem.
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