
MTHM024/MTH714U Group Theory

Problem Sheet 4 Solutions

1 (a) If n = 2, then Ω contains only the single element {1,2}, and obviously every
element of S2 fixes it; so the action is not faithful. (If g = (1,2), then {1,2}g =
{1g,2g}= {2,1}= {1,2}.)

(b) If n = 3, the map

{1,2} 7→ 3, {2,3} 7→ 1, {1,3} 7→ 2

is an isomorphism from the action on Ω to the usual action on {1,2,3}, which is
obviously doubly transitive.

(c) If n = 4, then the relation {i, j} ∼ {k, l} if the sets {i, j} and {k, l} are equal or
disjoint, is a congruence: it is obviously invariant under S4, and the fact that it is an
equivalence relation is most easily seen by observing that the three equivalence classes
form a partition of Ω. So S4 is imprimitive.

(d) Assume that n ≥ 5. To show that the action of Sn on Ω is primitive, suppose
that ≡ is a congruence, which is not the relation of equality, so two unequal pairs are
congruent. There are two cases:

• Two pairs with an element in common, say {a,b} and {a,c}, are congruent.
Since Sn acts transitively on configurations like this, it follows that every two
pairs with an element in common are congruent. Then for example, {1,2} is
congruent to {1,3} and to {2,4}; so two disjoint pairs are also congruent. Now
reason as in the next case.

• Two disjoint pairs are congruent, say {a,b} and {c,d}. Again Sn is transitive
on such configurations, so every two disjoint pairs are congruent. Now {1,2} is
congruent to {3,4} and to {3,5} [here we use the fact that n ≥ 5], so two pairs
with an element in common are congruent. Now reason as in the preceding case.

The conclusion is that any two pairs are congruent, so the congruence is the universal
relation. Thus the group is primitive.

To show it is not doubly transitive, observe that a permutation cannot map two
intersecting pairs like {1,2} and {1,3} to two disjoint pairs like {1,2} and {3,4}.
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2 (a) Any automorphism of a group G must permute the elements of G and fix the
identity, so must permute the non-identity elements. If G = V4, there are three non-
identity elements, so Aut(G) ≤ S3. Why is it equal to S3? One way to see this is to
observe that, if V4 = {1,a,b,c}, then we can specify the multiplication as follows:

• 1x = x1 = x and x2 = 1 for all x ∈ G;

• the product of any two distinct non-identity elements is the third.

Stated in this way, it is clear that any permutation of the non-identity elements is an
automorphism of the group.

(b) Let G = S3. Since Z(G) = {1}, we have

G ∼= Inn(G)≤ Aut(G),

and we are done if we can show that G has at most six automorphisms. But G has two
elements of order 3 and three of order 2; any choice of an element a of order 3 and b
of order 2 generates the group, so an automorphism is uniquely determined by what
it does to a and b. And a must go to an element of order 3, and b to an element of
order 2, so there are at most 2 ·3 = 6 choices.

(c) For n > 2 and n 6= 6, the symmetric group has trivial centre and no outer auto-
morphisms; so

Aut(Sn)∼= Inn(Sn)∼= Sn/Z(Sn)∼= Sn.

Many other examples are possible, for example dihedral groups of order greater than 4.
(d) Suppose that G is elementary abelian of order 8. Then G is isomorphic to the

additive group of a 3-dimensional vector space over the field Z2 with two elements.
Any map taking a basis to a basis extends uniquely to an automorphism. So the order
of the automorphism group is equal to the number of bases. Now there are

• 7 choices for the first basis vector u (any non-zero vector);

• 6 choices for the second basis vector v (any vector which is not a multiple of u,
thus 0 and u are excluded);

• 4 choices for the third basis vector (any vector which is not a linear combination
of u and v, thus 0, u, v and u+ v are excluded).

Now it is a simple exercise to label the Fano plane with the seven non-zero vectors
of the 3-dimensional vector space in such a way that three points form a line if and
only if the corresponding vectors sum to 0. So any automorphism of the group will
be an automorphism of the Fano plane. Since the two automorphism groups have the
same order 168, they are equal.
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3 If G is non-abelian, suppose that gh 6= hg. Then conjugation by g (the map x 7→
g−1xg) is an (inner) automorphism of G, and is not the identity, since it doesn’t fix h.

If G is abelian, then the map 7→ x−1 is an automorphism, since (xy)−1 = y−1x−1 =
x−1y−1. If some element of G is not equal to its inverse, then this automorphism is
non-trivial. [Note that the map x 7→ x−1 is an automorphism of G if and only if G is
abelian.]

Finally, if every element of G is equal to its inverse, then G is an elementary abelian
2-group, and so is isomorphic to the additive group of a k-dimensional vector space
over Z2 (where |G| = 2k). Since |G| > 2 we have k > 1. Now choose a basis for G;
the map which switches the first two basis vectors and fixes the rest is a non-trivial
automorphism.

All of this works exactly the same for infinite groups except for the innocent-
looking phrase “choose a basis”. The proof that every (infinite-dimensional) vector
space has a basis requires the Axiom of Choice.
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