University of London

MTHM024/MTH714U

Group Theory

Solutions 3

1 (a) Let $G=C_{n}$, with generator a, and let H be a subgroup of G. Let k be the smallest positive integer for which $a^{k} \in H$. (There certainly are some positive integers with this property, e.g. $k=n$.) Now we claim that, if $a^{m} \in H$, then k divides m. For if not, then let $m=k q+r$, with $0<r<k$; then $a^{r}=a^{m} \cdot\left(a^{k}\right)^{-q} \in$ H, contradicting the definition of k. So a^{k} generates H, which is thus cyclic.
(b) Let G be the dihedral group of order $2 n$, the group of symmetries of a regular n-gon. Then G contains a cyclic group C of order n consisting of rotations; all the elements outside C are reflections. Let H be any subgroup of G. If $H \leq C$, then H is cyclic, by (a); so suppose not. Then $H \cap C$ is a cyclic group of order m, say, and $|H|=2 m$. An element of H outside C is a reflection (so has order 2) and conjugates a generator of $H \cap C$ to its inverse (since it conjugates every element of C to its inverse). Thus H is a dihedral group.
(c) Further to (b), we see that G contains a unique cyclic subgroup of order m consisting of rotations, for every m dividing n. Also, if K is such a subgroup, and t any reflection, then $\langle K, t\rangle$ is a dihedral group. If $|K|=m$, then the dihedral group $\langle K, t\rangle$ contains m reflections. Since there are n involutions, there must be n / m dihedral subgroups of order $2 m$.
If n is odd, then all these dihedral groups are conjugate, so they are not normal (unless $m=n$, in which case we have the whole group). If n is even, the reflections fall into two conjugacy classes. Now if n / m is even, then the dihedral group of order $2 m$ contains reflections from only one class, so there are two conjugacy classes of dihedral groups, while if n / m is odd, then all the dihedral groups contain reflections from both classes and so all is conjugate.
So the normal subgroups are: all the cyclic rotation groups C_{m}; and the dihedral groups $D_{2 m}$ for $m=1$ and (if n is even) $m=2$.
(d) In D_{12}, we see that there are three normal subgroups of index 2 , namely C_{6} and two D_{6} s. Moreover, C_{6} has two composition series $C_{6} \triangleright C_{2} \triangleright\{1\}$ and $C_{6} \triangleright$ $C_{3} \triangleright\{1\}$, while D_{6} has only one, namely $D_{6} \triangleright C_{3} \triangleright\{1\}$. So there are four composition series for D_{12}.

2 The normal subgroups of S_{4} are A_{4}, V_{4} (the Klein group) and $\{1\}$. So any composition series must begin $S_{4} \triangleright A_{4}$. Now the normal subgroups of A_{4} are V_{4} and $\{1\}$, so the series must continue $A_{4} \triangleright V_{4}$. Finally, V_{4} has three cyclic subgroups of order 2, all normal, so there are three ways to continue the series as $V_{4} \triangleright C_{2} \triangleright\{1\}$.

3 Let $|G|=120$ and let G have composition factors C_{2} and A_{5}. Then G has at most one normal subgroup of order 60, and at most one normal subgroup of order 2. [Why? Use the fact that A_{5} is simple. For example, if H and K were two normal subgroups of order 60 , then $H \cong A_{5}$, and $H \cap K$ is a subgroup of index 2 in H.]
(a) If normal subgroups of both orders exist, then their intersection is $\{1\}$ and their product is G, so G is their direct product, and is isomorphic to $C_{2} \times A_{5}$.
(b) The group $G=S_{5}$ has its only non-trivial normal subgroup A_{5}, which is simple, so $S_{5} \triangleright A_{5} \triangleright\{1\}$ is the only composition series.
(c) The group $\operatorname{SL}(2,5)$ has a normal subgroup $\{ \pm I\}$ of order 2 , and as we have seen, the quotient is $\operatorname{PSL}(2,5) \cong A_{5}$. This group has only one element of order 2, so cannot have any other subgroup of order 2, and cannot have a subgroup isomorphic to A_{5}. So $\operatorname{SL}(2,5) \triangleright\{ \pm I\} \triangleright\{I\}$ is the only composition series.

4 (a) Let G be an elementary abelian p-group. If its order were divisible by a prime $q \neq p$, then by Cauchy's Theorem it would contain an element of order q, which it does not. So $|G|$ is a power of p.
(b) There are two ways to argue. First, use the structure theorem for finite abelian groups to express G as a direct product of cyclic groups. Since all non-identity elements have order p, these cyclic groups must all be C_{p}.
The second method avoids using this theorem. Write the abelian group G additively, and define $n g=g+g+\cdots+g$ (n times) for $0 \leq n \leq p-1$. Since $p g=0$, it is easy to show that this scalar multiplication makes G into a vector space over the field $\mathrm{GF}(p)$ of integers mod p. Choose a basis for this vector space. Translating back to group theory language, the elements of this basis are generators of cyclic groups whose direct product is G.

