
MTHM024/MTH714U Group Theory

Solutions 3 November 2011

1 (a) Let G = Cn, with generator a, and let H be a subgroup of G. Let k be the
smallest positive integer for which ak ∈ H. (There certainly are some positive
integers with this property, e.g. k = n.) Now we claim that, if am ∈ H, then k
divides m. For if not, then let m = kq+r, with 0 < r < k; then ar = am ·(ak)−q ∈
H, contradicting the definition of k. So ak generates H, which is thus cyclic.

(b) Let G be the dihedral group of order 2n, the group of symmetries of a regular
n-gon. Then G contains a cyclic group C of order n consisting of rotations; all
the elements outside C are reflections. Let H be any subgroup of G. If H ≤C,
then H is cyclic, by (a); so suppose not. Then H∩C is a cyclic group of order m,
say, and |H|= 2m. An element of H outside C is a reflection (so has order 2) and
conjugates a generator of H ∩C to its inverse (since it conjugates every element
of C to its inverse). Thus H is a dihedral group.

(c) Further to (b), we see that G contains a unique cyclic subgroup of order m con-
sisting of rotations, for every m dividing n. Also, if K is such a subgroup, and
t any reflection, then 〈K, t〉 is a dihedral group. If |K| = m, then the dihedral
group 〈K, t〉 contains m reflections. Since there are n involutions, there must be
n/m dihedral subgroups of order 2m.

If n is odd, then all these dihedral groups are conjugate, so they are not normal
(unless m = n, in which case we have the whole group). If n is even, the re-
flections fall into two conjugacy classes. Now if n/m is even, then the dihedral
group of order 2m contains reflections from only one class, so there are two
conjugacy classes of dihedral groups, while if n/m is odd, then all the dihedral
groups contain reflections from both classes and so all is conjugate.

So the normal subgroups are: all the cyclic rotation groups Cm; and the dihedral
groups D2m for m = 1 and (if n is even) m = 2.

(d) In D12, we see that there are three normal subgroups of index 2, namely C6 and
two D6s. Moreover, C6 has two composition series C6 BC2 B {1} and C6 B
C3 B {1}, while D6 has only one, namely D6 BC3 B {1}. So there are four
composition series for D12.
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2 The normal subgroups of S4 are A4, V4 (the Klein group) and {1}. So any compo-
sition series must begin S4 BA4. Now the normal subgroups of A4 are V4 and {1}, so
the series must continue A4 BV4. Finally, V4 has three cyclic subgroups of order 2, all
normal, so there are three ways to continue the series as V4 BC2 B{1}.

3 Let |G| = 120 and let G have composition factors C2 and A5. Then G has at most
one normal subgroup of order 60, and at most one normal subgroup of order 2. [Why?
Use the fact that A5 is simple. For example, if H and K were two normal subgroups
of order 60, then H ∼= A5, and H ∩K is a subgroup of index 2 in H.]

(a) If normal subgroups of both orders exist, then their intersection is {1} and their
product is G, so G is their direct product, and is isomorphic to C2×A5.

(b) The group G = S5 has its only non-trivial normal subgroup A5, which is simple,
so S5 BA5 B{1} is the only composition series.

(c) The group SL(2,5) has a normal subgroup {±I} of order 2, and as we have
seen, the quotient is PSL(2,5) ∼= A5. This group has only one element of order
2, so cannot have any other subgroup of order 2, and cannot have a subgroup
isomorphic to A5. So SL(2,5)B{±I}B{I} is the only composition series.

4 (a) Let G be an elementary abelian p-group. If its order were divisible by a prime
q 6= p, then by Cauchy’s Theorem it would contain an element of order q, which
it does not. So |G| is a power of p.

(b) There are two ways to argue. First, use the structure theorem for finite abelian
groups to express G as a direct product of cyclic groups. Since all non-identity
elements have order p, these cyclic groups must all be Cp.

The second method avoids using this theorem. Write the abelian group G addi-
tively, and define ng = g+g+ · · ·+g (n times) for 0≤ n≤ p−1. Since pg = 0,
it is easy to show that this scalar multiplication makes G into a vector space over
the field GF(p) of integers mod p. Choose a basis for this vector space. Trans-
lating back to group theory language, the elements of this basis are generators
of cyclic groups whose direct product is G.
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