

MTHM024/MTH714U

Group Theory

Solutions 3

November 2011

- 1 (a) Let $G = C_n$, with generator a, and let H be a subgroup of G. Let k be the smallest positive integer for which $a^k \in H$. (There certainly are some positive integers with this property, e.g. k = n.) Now we claim that, if $a^m \in H$, then k divides m. For if not, then let m = kq + r, with 0 < r < k; then $a^r = a^m \cdot (a^k)^{-q} \in H$, contradicting the definition of k. So a^k generates H, which is thus cyclic.
 - (b) Let G be the dihedral group of order 2n, the group of symmetries of a regular *n*-gon. Then G contains a cyclic group C of order n consisting of rotations; all the elements outside C are reflections. Let H be any subgroup of G. If $H \le C$, then H is cyclic, by (a); so suppose not. Then $H \cap C$ is a cyclic group of order m, say, and |H| = 2m. An element of H outside C is a reflection (so has order 2) and conjugates a generator of $H \cap C$ to its inverse (since it conjugates every element of C to its inverse). Thus H is a dihedral group.
 - (c) Further to (b), we see that *G* contains a unique cyclic subgroup of order *m* consisting of rotations, for every *m* dividing *n*. Also, if *K* is such a subgroup, and *t* any reflection, then $\langle K, t \rangle$ is a dihedral group. If |K| = m, then the dihedral group $\langle K, t \rangle$ contains *m* reflections. Since there are *n* involutions, there must be n/m dihedral subgroups of order 2m.

If *n* is odd, then all these dihedral groups are conjugate, so they are not normal (unless m = n, in which case we have the whole group). If *n* is even, the reflections fall into two conjugacy classes. Now if n/m is even, then the dihedral group of order 2m contains reflections from only one class, so there are two conjugacy classes of dihedral groups, while if n/m is odd, then all the dihedral groups contain reflections from both classes and so all is conjugate.

So the normal subgroups are: all the cyclic rotation groups C_m ; and the dihedral groups D_{2m} for m = 1 and (if *n* is even) m = 2.

(d) In D_{12} , we see that there are three normal subgroups of index 2, namely C_6 and two D_6 s. Moreover, C_6 has two composition series $C_6 \triangleright C_2 \triangleright \{1\}$ and $C_6 \triangleright C_3 \triangleright \{1\}$, while D_6 has only one, namely $D_6 \triangleright C_3 \triangleright \{1\}$. So there are four composition series for D_{12} .

2 The normal subgroups of S_4 are A_4 , V_4 (the Klein group) and $\{1\}$. So any composition series must begin $S_4 \triangleright A_4$. Now the normal subgroups of A_4 are V_4 and $\{1\}$, so the series must continue $A_4 \triangleright V_4$. Finally, V_4 has three cyclic subgroups of order 2, all normal, so there are three ways to continue the series as $V_4 \triangleright C_2 \triangleright \{1\}$.

3 Let |G| = 120 and let *G* have composition factors C_2 and A_5 . Then *G* has at most one normal subgroup of order 60, and at most one normal subgroup of order 2. [Why? Use the fact that A_5 is simple. For example, if *H* and *K* were two normal subgroups of order 60, then $H \cong A_5$, and $H \cap K$ is a subgroup of index 2 in *H*.]

- (a) If normal subgroups of both orders exist, then their intersection is $\{1\}$ and their product is *G*, so *G* is their direct product, and is isomorphic to $C_2 \times A_5$.
- (b) The group $G = S_5$ has its only non-trivial normal subgroup A_5 , which is simple, so $S_5 \triangleright A_5 \triangleright \{1\}$ is the only composition series.
- (c) The group SL(2,5) has a normal subgroup $\{\pm I\}$ of order 2, and as we have seen, the quotient is $PSL(2,5) \cong A_5$. This group has only one element of order 2, so cannot have any other subgroup of order 2, and cannot have a subgroup isomorphic to A_5 . So $SL(2,5) \triangleright \{\pm I\} \triangleright \{I\}$ is the only composition series.
- 4 (a) Let G be an elementary abelian p-group. If its order were divisible by a prime $q \neq p$, then by Cauchy's Theorem it would contain an element of order q, which it does not. So |G| is a power of p.
 - (b) There are two ways to argue. First, use the structure theorem for finite abelian groups to express G as a direct product of cyclic groups. Since all non-identity elements have order p, these cyclic groups must all be C_p .

The second method avoids using this theorem. Write the abelian group G additively, and define $ng = g + g + \dots + g$ (n times) for $0 \le n \le p - 1$. Since pg = 0, it is easy to show that this scalar multiplication makes G into a vector space over the field GF(p) of integers mod p. Choose a basis for this vector space. Translating back to group theory language, the elements of this basis are generators of cyclic groups whose direct product is G.