
MTHM024/MTH714U Group Theory

Solutions 2 November 2011

1 (a) Any permutation can be written as a product of disjoint cycles, so it is enough
to show that any cycle can be written as a product of transpositions. Check
directly that

(1,2,3, . . . ,n) = (1,2)(1,3) · · ·(1,n).

(b) The relation is clearly reflexive and symmetric. To prove transitivity, suppose
that i ∼ j and j ∼ k. The cases where two of i, j,k are equal are straight-
forward, so suppose that they are all distinct. Then (i, j),( j,k) ∈ G, and so
(i, j)( j,k)(i, j) = (i,k) ∈ G, whence i ∼ k.

By definition, if ∆ is an equivalence class, then G contains all transpositions
(i, j) for i, j ∈ ∆, i 6= j; these generate the symmetric group on ∆, fixing every
point outside ∆.

(c) Let N be the subgroup of G generated by its transpositions. Since the set of
transpositions is closed under conjugation, N is a normal subgroup. Now N
fixes each equivalence class (as a set), and contains all the permutations fix-
ing each class. Any such permutation is uniquely expressible as a product of
permutations on the equivalence classes; so N is a direct product as claimed.

2 (a) We are looking for Sylow p-subgroups for p = 5,3,2; they should have orders
5,3,8 respectively. It is enough to give an example of each.

p = 5: the cyclic group generated by a 5-cycle;

p = 3: the cyclic group generated by a 3-cycle;

p = 2: the dihedral group of symmetries of a square, fixing the remaining
point.

There are 24 elements of order 5, hence 24/4 = 6 Sylow 5-subgroups; 20 ele-
ments of ordedr 3, hence 20/2 = 10 Sylow 3-subgroups. To count the Sylow
2-subgroups we note that, by the conjugacy part of Sylow’s theorem, they are
all symmetry groups of squares, so we have to count the number of ways of la-
belling a square and an isolated point. There are 5 choices for the isolated point,
and 3 ways of labelling the square; so 15 Sylow 2-subgroups.
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(b) The conjugacy classes in S5 have sizes 1 (the identity), 10 (the transpositions),
15 (products of two transpositions), 20 (the 3-cycles), 20 (the products of a
2-cycle and a 3-cycle), 30 (the 4-cycles), and 24 (the 5-cycles). How can we
choose some of these, including the identity, to have size dividing 120? There
are trivial solutions corresponding to the identity and the whole group; what
others are there? A little thought shows that the numerical solutions are 1 +
24 + 15 or 1 + 24 + 15 + 20. A subgroup containing elements which are the
product of a 2-cycle and a 3-cycle would also contain their squares, which are
3-cycles; so the 20 must be the class of 3-cycles. Now it is easy to see that
we can write a 3-cycle as the product of two double transpositions; so if we
include 15 we must also include 20. So the only possibility is to use all the even
permutations, obtaining A5.

Thus the only normal subgroups are {1}, A5 and S5.

3 (a) The number of Sylow 5-subgroups of a group of order 40 is congruent to 1
(mod 5) and divides 8, so is 1; thus a Sylow 5-subgroup is normal.

(b) The number of Sylow 7-subgroups of a group of order 84 is congruent to 1
(mod 7) and divides 12, so is 1; thus a Sylow 7-subgroup is normal.
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