University of London

MTHM024/MTH714U

Group Theory

Solutions 2

November 2011

1 (a) Any permutation can be written as a product of disjoint cycles, so it is enough to show that any cycle can be written as a product of transpositions. Check directly that

$$
(1,2,3, \ldots, n)=(1,2)(1,3) \cdots(1, n) .
$$

(b) The relation is clearly reflexive and symmetric. To prove transitivity, suppose that $i \sim j$ and $j \sim k$. The cases where two of i, j, k are equal are straightforward, so suppose that they are all distinct. Then $(i, j),(j, k) \in G$, and so $(i, j)(j, k)(i, j)=(i, k) \in G$, whence $i \sim k$.
By definition, if Δ is an equivalence class, then G contains all transpositions (i, j) for $i, j \in \Delta, i \neq j$; these generate the symmetric group on Δ, fixing every point outside Δ.
(c) Let N be the subgroup of G generated by its transpositions. Since the set of transpositions is closed under conjugation, N is a normal subgroup. Now N fixes each equivalence class (as a set), and contains all the permutations fixing each class. Any such permutation is uniquely expressible as a product of permutations on the equivalence classes; so N is a direct product as claimed.

2 (a) We are looking for Sylow p-subgroups for $p=5,3,2$; they should have orders $5,3,8$ respectively. It is enough to give an example of each.
$p=5$: the cyclic group generated by a 5 -cycle;
$p=3$: the cyclic group generated by a 3 -cycle;
$p=2$: the dihedral group of symmetries of a square, fixing the remaining point.

There are 24 elements of order 5, hence $24 / 4=6$ Sylow 5 -subgroups; 20 elements of ordedr 3 , hence $20 / 2=10$ Sylow 3 -subgroups. To count the Sylow 2-subgroups we note that, by the conjugacy part of Sylow's theorem, they are all symmetry groups of squares, so we have to count the number of ways of labelling a square and an isolated point. There are 5 choices for the isolated point, and 3 ways of labelling the square; so 15 Sylow 2 -subgroups.
(b) The conjugacy classes in S_{5} have sizes 1 (the identity), 10 (the transpositions), 15 (products of two transpositions), 20 (the 3 -cycles), 20 (the products of a 2 -cycle and a 3 -cycle), 30 (the 4 -cycles), and 24 (the 5 -cycles). How can we choose some of these, including the identity, to have size dividing 120? There are trivial solutions corresponding to the identity and the whole group; what others are there? A little thought shows that the numerical solutions are $1+$ $24+15$ or $1+24+15+20$. A subgroup containing elements which are the product of a 2 -cycle and a 3 -cycle would also contain their squares, which are 3 -cycles; so the 20 must be the class of 3 -cycles. Now it is easy to see that we can write a 3-cycle as the product of two double transpositions; so if we include 15 we must also include 20 . So the only possibility is to use all the even permutations, obtaining A_{5}.

Thus the only normal subgroups are $\{1\}, A_{5}$ and S_{5}.
3 (a) The number of Sylow 5 -subgroups of a group of order 40 is congruent to 1 $(\bmod 5)$ and divides 8 , so is 1 ; thus a Sylow 5 -subgroup is normal.
(b) The number of Sylow 7 -subgroups of a group of order 84 is congruent to 1 $(\bmod 7)$ and divides 12 , so is 1 ; thus a Sylow 7 -subgroup is normal.

