
MTHM024/MTH714U Group Theory

Solutions 1 October 2011

1 (a) By the Subgroup Test, we have to show that H ∩K is non-empty (which it is,
as it contains the identity), and that if x,y∈H∩K, then xy−1 ∈H∩K. This holds
because x,y ∈ H, so xy−1 ∈ H (as H is a subgroup), and similarly xy−1 ∈ K.

(b) We claim that, if x ∈ HK, then x can be written as hk (with h ∈ H and k ∈
K) in exactly |H ∩K| ways. Given one such expression x = hk, we have x =
(hg−1)(gk) for all g∈H∩K, giving |H∩K| expressions, Conversely, if x = h′k′

is any such expression, then hk = h′k′, so (h′)−1h = k′k−1 = g, say, so h′ = hg−1

and k′ = gk. So we have found all such expressions.

Hence |HK|= |H| · |K|/|H∩K|, since by counting the pairs (h,k) we overcount
by a factor of |H ∩K|.

(c) Clearly HK is non-empty. If h1k1,h2k2 ∈ HK, then

(h1k1)(h2k2)−1 = h1kh−1
2 where k = k1k−1

2

= h1h3k where h3 = kh−1
2 k−1 ∈ kHk−1 = k

∈ HK,

so HK is a subgroup.

(d) Let G = S3, and let H and K be the subgroups of order 2 generated by (1,2) and
(1,3) respectively. Then |HK|= 4, and so HK cannot be a subgroup of a group
of order 6, by Lagrange’s Theorem.

2 We have

(q1 +q2)θ = e2πi(q1+q2)

= e2πiq1 · e2πiq2

= q1θ ·q2θ ,

so θ is a homomorphism.
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Since every root of unity has the form e2πiq for some rational number q, θ is onto.
Its kernel is

{q ∈ Q : e2πiq = 1}= Z.

So Q/Z ∼= A, by the First Isomorphism Theorem.
Every element of A has finite order (the order of e2πiq is the denominator of q),

while every non-zero element of the infinite cyclic group has infinite order. So they
are not isomorphic.

3 This question was discussed in the class; here is a summary.

Tetrahedron: every symmetry induces a permutation on the four vertices; if we
number them {1,2,3,4}, then we have homomorphisms from the rotation and sym-
metry groups to S4, which are obviously one-to-one. Comparing orders we see that
they symmetry group is S4; the rotation group has order 12, and the only subgroup
of S4 of order 12 is A4. (Alternatively, list directly the rotations as permutations and
observe that they are all even permutations.)

Cube: We construct an action of the symmetry group on the set of four diagonals of
the cube (each joining a vertex to its opposite). This gives a homomorphism from the
symmetry group to S4; its kernel is easily seen to be {±I}. So restricted to the rotation
group, the action is faithful, and the rotation group is S4.

In the symmetry group G, we now have two normal subgroups: the rotation group
H ∼= S4, of order 24; and the group K = {±I}, of order 2. Their intersection is the
identity and their product is G. So G ∼= H ×K.

4 (a) Split the n points up into a1 sets of size pi for i = 0, . . . ,r, and let G be the
group fixing each of these sets. It is easily seen that G is the direct product of
symmetric groups of the appropriate sizes.

Some slightly tedious number theory (which we will need later) shows that the
power of p dividing n! is the same as the power of p dividing |G|.

(b) The power of p dividing pi! is as claimed: if we write out the factorial as a prod-
uct, there are pi−1 terms which are multiples of p, of which pi−2 are multiples
of p2, and so on.

Given a set of size pi, choose partitions π1,π2, . . . ,πi−1 where pi j has p j parts of
size pi− j, and each partition refines the one before. Now consider permutations
which fix all these partitions, and permute the parts of π j+1 in each part of π j
cyclically. This has the required order.

(c) Take the direct product of Sylow p-subgroups of Spi for each i to get a Sylow
p-subgroup of G. By our remark in the first part, this is also a Sylow p-subgroup
of Sn.
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(d) Given any finite group H of order n, by Cayley’s Theorem we can embed H into
the symmetric group Sn, which has a Sylow p-subgroup. By Sylow’s Lemma,
H has a Sylow p-subgroup.
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