

MTHM024/MTH714U

Group Theory

Solutions 1

October 2011

- 1 (a) By the Subgroup Test, we have to show that $H \cap K$ is non-empty (which it is, as it contains the identity), and that if $x, y \in H \cap K$, then $xy^{-1} \in H \cap K$. This holds because $x, y \in H$, so $xy^{-1} \in H$ (as *H* is a subgroup), and similarly $xy^{-1} \in K$.
 - (b) We claim that, if $x \in HK$, then x can be written as hk (with $h \in H$ and $k \in K$) in exactly $|H \cap K|$ ways. Given one such expression x = hk, we have $x = (hg^{-1})(gk)$ for all $g \in H \cap K$, giving $|H \cap K|$ expressions, Conversely, if x = h'k' is any such expression, then hk = h'k', so $(h')^{-1}h = k'k_{-1} = g$, say, so $h' = hg^{-1}$ and k' = gk. So we have found all such expressions.

Hence $|HK| = |H| \cdot |K| / |H \cap K|$, since by counting the pairs (h, k) we overcount by a factor of $|H \cap K|$.

(c) Clearly *HK* is non-empty. If $h_1k_1, h_2k_2 \in HK$, then

$$(h_1k_1)(h_2k^2)^{-1} = h_1kh_2^{-1}$$
 where $k = k_1k_2^{-1}$
= h_1h_3k where $h_3 = kh_2^{-1}k^{-1} \in kHk^{-1} = k$
 $\in HK$,

so HK is a subgroup.

- (d) Let $G = S_3$, and let *H* and *K* be the subgroups of order 2 generated by (1,2) and (1,3) respectively. Then |HK| = 4, and so *HK* cannot be a subgroup of a group of order 6, by Lagrange's Theorem.
- 2 We have

$$(q_1+q_2)\theta = e^{2\pi i (q_1+q_2)}$$
$$= e^{2\pi i q_1} \cdot e^{2\pi i q_2}$$
$$= q_1\theta \cdot q_2\theta,$$

so θ is a homomorphism.

Since every root of unity has the form $e^{2\pi i q}$ for some rational number q, θ is onto. Its kernel is

$$\{q \in \mathbb{Q} : \mathrm{e}^{2\pi\mathrm{i}q} = 1\} = \mathbb{Z}.$$

So $\mathbb{Q}/\mathbb{Z} \cong A$, by the First Isomorphism Theorem.

Every element of A has finite order (the order of $e^{2\pi i q}$ is the denominator of q), while every non-zero element of the infinite cyclic group has infinite order. So they are not isomorphic.

3 This question was discussed in the class; here is a summary.

Tetrahedron: every symmetry induces a permutation on the four vertices; if we number them $\{1,2,3,4\}$, then we have homomorphisms from the rotation and symmetry groups to S_4 , which are obviously one-to-one. Comparing orders we see that they symmetry group is S_4 ; the rotation group has order 12, and the only subgroup of S_4 of order 12 is A_4 . (Alternatively, list directly the rotations as permutations and observe that they are all even permutations.)

Cube: We construct an action of the symmetry group on the set of four diagonals of the cube (each joining a vertex to its opposite). This gives a homomorphism from the symmetry group to S_4 ; its kernel is easily seen to be $\{\pm I\}$. So restricted to the rotation group, the action is faithful, and the rotation group is S_4 .

In the symmetry group G, we now have two normal subgroups: the rotation group $H \cong S_4$, of order 24; and the group $K = \{\pm I\}$, of order 2. Their intersection is the identity and their product is G. So $G \cong H \times K$.

4 (a) Split the *n* points up into a_1 sets of size p^i for i = 0, ..., r, and let *G* be the group fixing each of these sets. It is easily seen that *G* is the direct product of symmetric groups of the appropriate sizes.

Some slightly tedious number theory (which we will need later) shows that the power of p dividing n! is the same as the power of p dividing |G|.

(b) The power of p dividing p^i ! is as claimed: if we write out the factorial as a product, there are p^{i-1} terms which are multiples of p, of which p^{i-2} are multiples of p^2 , and so on.

Given a set of size p^i , choose partitions $\pi_1, \pi_2, \ldots, \pi_{i-1}$ where pi_j has p^j parts of size p^{i-j} , and each partition refines the one before. Now consider permutations which fix all these partitions, and permute the parts of π_{j+1} in each part of π_j cyclically. This has the required order.

(c) Take the direct product of Sylow *p*-subgroups of S_{p^i} for each *i* to get a Sylow *p*-subgroup of *G*. By our remark in the first part, this is also a Sylow *p*-subgroup of S_n .

(d) Given any finite group H of order n, by Cayley's Theorem we can embed H into the symmetric group S_n , which has a Sylow p-subgroup. By Sylow's Lemma, H has a Sylow p-subgroup.