University of London

MTHM024/MTH714U

Group Theory

Solutions 1

1 (a) By the Subgroup Test, we have to show that $H \cap K$ is non-empty (which it is, as it contains the identity), and that if $x, y \in H \cap K$, then $x y^{-1} \in H \cap K$. This holds because $x, y \in H$, so $x y^{-1} \in H$ (as H is a subgroup), and similarly $x y^{-1} \in K$.
(b) We claim that, if $x \in H K$, then x can be written as $h k$ (with $h \in H$ and $k \in$ K) in exactly $|H \cap K|$ ways. Given one such expression $x=h k$, we have $x=$ $\left(h g^{-1}\right)(g k)$ for all $g \in H \cap K$, giving $|H \cap K|$ expressions, Conversely, if $x=h^{\prime} k^{\prime}$ is any such expression, then $h k=h^{\prime} k^{\prime}$, so $\left(h^{\prime}\right)^{-1} h=k^{\prime} k_{-1}=g$, say, so $h^{\prime}=h g^{-1}$ and $k^{\prime}=g k$. So we have found all such expressions.

Hence $|H K|=|H| \cdot|K| /|H \cap K|$, since by counting the pairs (h, k) we overcount by a factor of $|H \cap K|$.
(c) Clearly $H K$ is non-empty. If $h_{1} k_{1}, h_{2} k_{2} \in H K$, then

$$
\begin{aligned}
\left(h_{1} k_{1}\right)\left(h_{2} k^{2}\right)^{-1} & =h_{1} k h_{2}^{-1} \quad \text { where } k=k_{1} k_{2}^{-1} \\
& =h_{1} h_{3} k \quad \text { where } h_{3}=k h_{2}^{-1} k^{-1} \in k H k^{-1}=k \\
& \in H K,
\end{aligned}
$$

so $H K$ is a subgroup.
(d) Let $G=S_{3}$, and let H and K be the subgroups of order 2 generated by $(1,2)$ and $(1,3)$ respectively. Then $|H K|=4$, and so $H K$ cannot be a subgroup of a group of order 6, by Lagrange's Theorem.

2 We have

$$
\begin{aligned}
\left(q_{1}+q_{2}\right) \theta & =\mathrm{e}^{2 \pi \mathrm{i}\left(q_{1}+q_{2}\right)} \\
& =\mathrm{e}^{2 \pi \mathrm{i} q_{1}} \cdot \mathrm{e}^{2 \pi \mathrm{i} q_{2}} \\
& =q_{1} \theta \cdot q_{2} \theta,
\end{aligned}
$$

so θ is a homomorphism.

Since every root of unity has the form $\mathrm{e}^{2 \pi \mathrm{i} q}$ for some rational number q, θ is onto. Its kernel is

$$
\left\{q \in \mathbb{Q}: \mathrm{e}^{2 \pi \mathrm{i} q}=1\right\}=\mathbb{Z}
$$

So $\mathbb{Q} / \mathbb{Z} \cong A$, by the First Isomorphism Theorem.
Every element of A has finite order (the order of $\mathrm{e}^{2 \pi \mathrm{i} q}$ is the denominator of q), while every non-zero element of the infinite cyclic group has infinite order. So they are not isomorphic.

3 This question was discussed in the class; here is a summary.
Tetrahedron: every symmetry induces a permutation on the four vertices; if we number them $\{1,2,3,4\}$, then we have homomorphisms from the rotation and symmetry groups to S_{4}, which are obviously one-to-one. Comparing orders we see that they symmetry group is S_{4}; the rotation group has order 12, and the only subgroup of S_{4} of order 12 is A_{4}. (Alternatively, list directly the rotations as permutations and observe that they are all even permutations.)

Cube: We construct an action of the symmetry group on the set of four diagonals of the cube (each joining a vertex to its opposite). This gives a homomorphism from the symmetry group to S_{4}; its kernel is easily seen to be $\{ \pm I\}$. So restricted to the rotation group, the action is faithful, and the rotation group is S_{4}.

In the symmetry group G, we now have two normal subgroups: the rotation group $H \cong S_{4}$, of order 24 ; and the group $K=\{ \pm I\}$, of order 2 . Their intersection is the identity and their product is G. So $G \cong H \times K$.

4 (a) Split the n points up into a_{1} sets of size p^{i} for $i=0, \ldots, r$, and let G be the group fixing each of these sets. It is easily seen that G is the direct product of symmetric groups of the appropriate sizes.
Some slightly tedious number theory (which we will need later) shows that the power of p dividing $n!$ is the same as the power of p dividing $|G|$.
(b) The power of p dividing p^{i} ! is as claimed: if we write out the factorial as a product, there are p^{i-1} terms which are multiples of p, of which p^{i-2} are multiples of p^{2}, and so on.
Given a set of size p^{i}, choose partitions $\pi_{1}, \pi_{2}, \ldots, \pi_{i-1}$ where $p i_{j}$ has p^{j} parts of size p^{i-j}, and each partition refines the one before. Now consider permutations which fix all these partitions, and permute the parts of π_{j+1} in each part of π_{j} cyclically. This has the required order.
(c) Take the direct product of Sylow p-subgroups of $S_{p^{i}}$ for each i to get a Sylow p-subgroup of G. By our remark in the first part, this is also a Sylow p-subgroup of S_{n}.
(d) Given any finite group H of order n, by Cayley's Theorem we can embed H into the symmetric group S_{n}, which has a Sylow p-subgroup. By Sylow's Lemma, H has a Sylow p-subgroup.

