
MTHM024/MTH714U Group Theory

Notes 7 Autumn 2011

7 Semidirect product

7.1 Definition and properties
Let A be a normal subgroup of the group G. A complement for A in G is a subgroup
H of G satisfying

• HA = G;

• H ∩A = {1}.

It follows that every element of G has a unique expression in the form ha for h∈H,
a ∈ A. For, if h1a1 = h2a2, then

h−1
2 h1 = a2a−1

1 ∈ H ∩A = {1},

so h−1
2 h1 = a2a−1

1 = 1, whence h1 = h2 and a1 = a2.
We are going to give a general construction for a group with a given normal sub-

group and a given complement. First some properties of complements.

Proposition 7.1 Let H be a complement for the normal subgroup A of G. Then

(a) H ∼= G/A;

(b) if G is finite then |A| · |H|= |G|.

Proof (a) We have
G/A = HA/A ∼= H/H ∩A = H,

the first equality because G = HA, the isomorphism by the Third Isomorphism Theo-
rem, and the second equality because H ∩A = {1}.

(b) Clear.

1



Example There are two groups of order 4, namely the cyclic group C4 and the Klein
group V4. Each has a normal subgroup isomorphic to C2; in the Klein group, this
subgroup has a complement, but in the cyclic group it doesn’t. (The complement
would be isomorphic to C2, but C4 has only one subgroup isomorphic to C2.)

If A is a normal subgroup of G, then G acts on A by conjugation; the map a 7→
g−1ag is an automorphism of A. Suppose that A has a complement H. Then, restricting
our attention to A, we have for each element of H an automorphism of A, in other
words, a map φ : H → Aut(A). Now this map is an automorphism: for

• (gφ)(hφ) maps a to h−1(g−1ag)h,

• (gh)φ maps a to (gh)−1a(gh),

and these two expressions are equal. We conclude that, if the normal subgroup A has
a complement H, then there is a homomorphism φ : H → Aut(A).

Conversely, suppose that we are given a homomorphism φ : H →Aut(A). For each
h ∈ H, we denote the image of a ∈ A under hφ by ah, to simplify the notation. Now
we make the following construction:

• we take as set the Cartesian product H ×A (the set of ordered pairs (h,a) for
h ∈ H and a ∈ A);

• we define an operation on this set by the rule

(h1,a1)∗ (h2,a2) = (h1h2,a
h2
1 a2).

We will see the reason for this slightly odd definition shortly.
Closure obviously holds; the element (1H ,1A) is the identity; and the inverse of

(h,a) is (h−1,(a−1)h−1
). (One way round, we have

(h,a)∗ (h−1,(a−1)h−1
) = (hh−1,ah−1

(a−1)h−1
) = (1H ,1N);

you should check the product the other way round for yourself.) What about the
associative law? If h1,h2,h3 ∈ H and a1,a2,a3 ∈ N, then

((h1,a1)∗ (h2,a2))∗ (h3,a3) = (h1h2,a
h2
1 a2)∗ (h3,a3) = (h1h2h3,(a

h2
1 a2)h3a3),

(h1,a1)∗ ((h2,a2)∗ (h3,a3)) = (h1,a1)∗ (h2h3,a
h3
2 a3) = (h1h2h3,a

h2h3
1 ah3

2 a3),

and the two elements on the right are equal.
So we have constructed a group, called the semi-direct product of A by H using

the homomorphism φ , and denoted by A oφ H. If the map φ is clear, we sometimes
simply write A o H. Note that the notation suggests two things: first, that A is the
normal subgroup; and second, that the semi-direct product is a generalisation of the
direct product. We now verify this fact.
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Proposition 7.2 Let φ : H → Aut(A) map every element of H to the identity automor-
phism. Then A oφ H ∼= A×H.

Proof The hypothesis means that ah = a for all a ∈ A, h ∈ H. So the rule for the
group operation in A oφ H simply reads

(h1,a1)∗ (h2,a2) = (h1h2,a1a2),

which is the group operation in the direct product.

Theorem 7.3 Let G be a group with a normal subgroup A and a complement H. Then
G ∼= A oφ H, where φ is the homomorphism from H to Aut(A) given by conjugation.

Proof As we saw, every element of G has a unique expression in the form ha, for
h ∈ H and a ∈ A; and

(h1a1)(h2a2) = h1h2(h−1
2 a1h2)a2 = (h1h2)(a

h2
1 a2),

where ah2
1 here means the image of a1 under conjugation by h2. So, if φ maps each

element h ∈ H to conjugation of A by h (an automorphism of A), we see that the map
ha 7→ (h,a) is an isomorphism from G to A oφ H.

Example: Groups of order pq, where p and q are distinct primes. Let us suppose
that p > q. Then there is only one Sylow p-subgroup P, which is therefore normal. Let
Q be a Sylow q-subgroup. Then Q is clearly a complement for P; so G is a semi-direct
product P oφ Q, for some homomorphism φ : Q → Aut(P).

Now Aut(Cp)∼=Cp−1 (see below). If q does not divide p−1, then |Q| and |Aut(P)|
are coprime, so φ must be trivial, and the only possibility for G is Cp ×Cq. However,
if q does divide p− 1, then Aut(Cp) has a unique subgroup of order q, and φ can be
an isomorphism from Cq to this subgroup. We can choose a generator for Cq to map
to a specified element of order q in Aut(Cp). So there is, up to isomorphism, a unique
semi-direct product which is not a direct product.

In other words, the number of groups of order pq (up to isomorphism) is 2 if q
divides p−1, and 1 otherwise.

Why is Aut(Cp) ∼= Cp−1? Certainly there cannot be more than p− 1 automor-
phisms; for there are only p−1 possible images of a generator, and once one is cho-
sen, the automorphism is determined. We can represent Cp as the additive group of
Zp, and then multiplication by any non-zero element of this ring is an automorphism
of the additive group. So Aut(Cp) is isomorphic to the multiplicative group of Zp. The
fact that this group is cyclic is a theorem of number theory (a generator for this cyclic
group is called a primitive root mod p). We simply refer to Number Theory notes for
this fact.
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7.2 The holomorph of a group
Let A be any group. Take H = Aut(A), and let φ be the identity map from H to Aut(A)
(mapping every element to itself). Then the semidirect product A oφ Aut(A) is called
the holomorph of A.

Exercise Show that the holomorph of A acts on A in such a way that A acts by right
multiplication and Aut(A) acts in the obious way (its elements are automorphisms
of A, which are after all permutations!). Note that all automorphisms fix the iden-
tity element of A; in fact, Aut(A) is the stabiliser of the identity in this action of the
holomorph.

Exercise Let G be a transitive permutation group with a regular normal subgroup A.
Show that G is isomorphic to a subgroup of the holomorph of A.

Example Let A be the Klein group. Its autoorphism group is the symmetric group
S3. The holomorph V4 o S3 is the symmetric group S4.

Example Let p be a prime and n a positive integer. Let A be the elementary abelian
group of order pn (the direct product of n copies of Cp). Show that Aut(A) = GL(n, p).
The holomorph of A is called the affine group of dimension n over Zp, denoted by
AGL(n, p). Exercise: Write down its order.

Exercise A group G is called complete if it has the properties Z(G) = {1} and
Out(G) = {1}. If G is complete, then

Aut(G) = Inn(G)∼= G/Z(G) = G,

in other words, a complete group is isomorphic to its automorphism group. Prove that,
if G is complete, then the holomorph of G is isomorphic to G×G.

Exercise Find a group G which is not complete but satisfies Aut(G)∼= G.

7.3 Wreath product
Here is another very important example of a semidirect product. Let F and H be
groups, and suppose that we are also given an action of H on the set {1, . . . ,n}. Then
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there is an action of H on the group Fn (the direct product of n copies of F) by
“permuting the coordinates”: that is,

( f1, f2, . . . , fn)h = ( f1h, f2h, . . . , fnh)

for f1, . . . , fn ∈ F and h ∈ H, where ih is the image of i under h in its given action
on {1, . . . ,n}. In other words, we have a homomorphism φ from H to Aut(Fn). The
semi-direct product Fn oφ H is known as the wreath product of F by H, and is written
F wr H (or sometimes as F oH).

Example Let F = H = C2, where H acts on {1,2} in the natural way. Then F2

is isomorphic to the Klein group {1,a,b,ab}, where a2 = b2 = 1 and ab = ba. If
H = {h}, then we have ah = b and bh = a; the wreath product F wr H is a group of
order 8. Prove that it is isomorphic to the dihedral group D8 (see also below).

There are two important properties of the wreath product, which I will not prove
here. The first shows that it has a “universal” property for imprimitive permutation
groups.

Let G be a permutation group on Ω, (This means that G acts faithfully on Ω, so that
G is a subgroup of the symmetric group on Ω, and assume that G acts imprimitively
on Ω. Recall that this means there is an equivalence relation on Ω which is non-trivial
(not equality or the universal relation) and is preserved by G. In this situation, we can
produce two smaller groups which give information about G:

• H is the permutation group induced by G on the set of congruence classes, that
is, the image of the action of G on the equivalence classes).

• Let ∆ be a congruence class, and F the permutation group induced on ∆ by its
setwise stabiliser in G.

Theorem 7.4 With the above notation, G is isomorphic to a subgroup of F wr H.

Example . The partition {{1,2},{3,4}} of {1,2,3,4} is preserved by a group of
order 8, which is isomorphic to D8. The two classes of the partition are permuted
transitively by a group isomorphic to C2; and the subgroup fixing {1,2} setwise also
acts on it as C2. The theorem illustrates that C2 wrC2 ∼= D8; we can write the elements
down explicitly as permutations. With the earlier notation, a = (1,2), b = (3,4), and
H = (1,3)(2,4).

The other application concerns group extensions, a topic we return to in the next
section of the notes. Let F and H be arbitrary groups. An extension of F by H refers
to any group G which has a normal subgroup isomorphic to F such that the quotient
is isomorphic to F .
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Theorem 7.5 Every extension of F by H is isomorphic to a subgroup of F wr H.

Example There are two extensions of C2 by C2, namely C4 and the Klein group V4.
We find them in the wreath product, using the earlier notation, as follows:

• 〈ah〉= 〈(1,4,2,3)〉 ∼= C4 (note that (ah)2 = ahah = aah = ab);

• 〈ab,h〉= 〈(1,2)(3,4),(1,3)(2,4)〉 ∼= V4.
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