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6 Linear groups
In this section we study the next important family of linear groups, the “projective
special linear groups” PSL(n,F). The proof of their simplicity is an application of
Iwasawa’s Lemma.

6.1 Finite fields
Our constructions of simple groups in this chapter work over any field, and give finite
groups if and only if the field is finite.

The finite fields were classified by Galois (this was one of the few pieces of work
published in his lifetime). His theorem is:

Theorem 6.1 The order of a finite field is a prime power. Conversely, for any prime
power q > 1, there is a field with q elements, unique up to isomorphism.

We will not prove this theorem here, since the techniques come from ring theory
rather than group theory. Here is a simple example, a field of four elements. We
construct it by adjoining to the field Z2 a root of an irreducible polynomial of degree 2.
Of the four polynomials of degree 2 over Z2, namely,

x2, x2 +1 = (x+1)2, x2 + x = x(x+1), x2 + x+1,

only the last is irreducible, so we add an element α satisfying α2 = α +1. (Remember
that, since −1 = 1 in Z2, we have −u = u for any element u in the field we are con-
structing.) Thus the addition and multiplication tables of our field are the following,
where we have put β = α +1 = α2:

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α
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Finite fields are called Galois fields. The unique Galois field of given prime power
order q is denoted by Fq or GF(q). Note that Fq ∼= Zq if and only if q is prime.

Note that the additive group of F4 is the Klein group, while the multiplicative
group is cyclic of order 3. This is an instance of a general fact.

Theorem 6.2 Let q = pr, where p is prime. Then:

(a) The additive group of Fq is elementary abelian of order q, that is, the direct
product of r copies of Cp.

(b) The multiplicative group of Fq is cyclic of order q−1.

(c) The automorphism group of Fq is cyclic of order r, generated by the Frobenius
map a 7→ ap.

Proof (a) For n ∈ N and u ∈ Fq, let nu = u + · · ·+ u (n terms). This is the additive
analogue of raising u to the nth power.

Since the additive group has order pr, there is an element u 6= 0 with order p,
thus pu = 0. But then pv = (pu)(u−1) = 0 for all v ∈ Fq. Thus the additive group is
elementary abelian.

(b) Let k be the exponent of the multiplicative group of Fq (the smallest positive in-
teger such that uk = 1 for all u 6= 0). Then k divides the order q−1 of the multiplicative
group. But the equation xk−1 = 0 has at most k solutions. So we must have k = q−1.
Now in our proof of the Fundamental Theorem of Finite Abelian Groups, we saw that
there is an element whose order is equal to the exponent. So the multiplicative group
is cyclic.

(c) We will not prove this, but simply describe an automorphism of the field which
generates the automorphism group. This is the Frobenius map u 7→ up. To show that
it is a homomorphism:

(u+ v)p =
p

∑
i=0

(
p
i

)
up−ivi = up + vp,

(uv)p = upvp.

In the first line we use the fact that the binomial coefficient
(

p
i

)
is divisible by p for

i = 1, . . . , p−1, so that
(

p
i

)
x = 0 in Fq.

Now a field has no non-trivial ideals, so the kernel of the Frobenius map is {0},
that is, it is one-to-one. Since Fq is a finite set, this implies that the Frobenius map is
a bijection, that is, an automorphism.
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6.2 Linear groups
Let F be any field. We denote by GL(n,F) the group of all invertible n× n matrices
over F ; this group is the general linear group of dimension n over F . For brevity, we
write GL(n,q) instead of GL(n,Fq). We always assume that n ≥ 2; for GL(1,F) is
simply the multiplicative group F× of F , and is abelian (and cyclic if F is finite).

Proposition 6.3

|GL(n,q)|= (qn−1)(qn−q) · · ·(qn−qn−1).

Proof A matrix is invertible if and only if its rows are linearly independent; this holds
if and only if the first row is non-zero and, for k = 2, . . . ,n, the kth row is not in the
subspace spanned by the first k−1 rows. The number of possible rows is qn, and the
number lying in any i-dimensional subspace is qi. So the number of choices of the
first row of an invertible matrix is qn−1, while for k = 2, . . . ,n, the number of choices
for the kth row is qn−qk−1. Multiplying these together gives the result.

Next we investigate normal subgroups of GL(n,q).

Proposition 6.4 The determinant map det : GL(n,F)→ F× is a homomorphism.

Proof This is the simple fact from linear algebra that det(AB) = det(A)det(B).

The kernel of the determinant map is the set of n×n matrices with determinant 1.
This is denoted SL(n,F), the special linear group of dimension n over F . Thus,
SL(n,F)CGL(n,F), and

GL(n,F)/SL(n,F)∼= F×

(the last fact follows from the First Isomorphism Theorem, since it is easy to see that
det is onto: for every element u ∈ F there exists an n×n matrix A with det(A) = u.

In particular, we see that

|SL(n,q)|= |GL(n,q)|/(q−1).

Let Ω denote the set of 1-dimensional subspaces of Fn, the n-dimensional vector
space over F . (The set Ω is the set of points of the (n− 1)-dimensional projective
space, denoted by PG(n−1,q). Really it is a geometric object and has a lot of struc-
ture, but we only need to regard it as a set.) We have

|Ω|= qn−1
q−1

.
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For there are qn − 1 non-zero vectors in Fn, each of which spans a 1-dimensional
subspace; but each 1-dimensional subspace is spanned by any of its q− 1 non-zero
vectors.

There is an action of GL(n,F) on Ω: the matrix A maps the subspace 〈v〉 to the
subspace 〈vA〉.

Proposition 6.5 The following conditions on a matrix A ∈ GL(n,F) are equivalent:

(a) A ∈ Z(GL(n,F));

(b) A belongs to the kernel of the action of GL(n,F) on Ω;

(c) A is a scalar matrix, that is, A = λ I for some λ ∈ F×.

Proof (a) ⇔ (c): Clearly scalar matrices commute with everything and so lie in the
centre of the group. Suppose A ∈ Z(GL(n,q)). If E is the matrix with entries 1 on
the diagonal and in position (1,2) and zero elsewhere, then EA is obtained from A by
adding the second row to the first, while AE is obtained by adding the first column to
the second. If these are equal, then the first and second diagonal elements of A are
equal, and the other entries in the first column and second row are zero. Repeating the
argument for the ith row and jth column, we conclude that A is a scalar matrix.

(b) ⇔ (c): Again it is clear that a scalar matrix fixes every 1-dimensional sub-
space. Let A be a matrix which fixes all 1-dimensional subspaces. Let e1, . . . ,en
be the standard basis vectors. Then we have eiA = αiei for i = 1, . . . ,n, (for some
α1, . . . ,αn ∈ F×), so A is a diagonal matrix. Also,

(ei + e j)A = β (ei + e j) for some β ∈ F×,

eiA+ e jA = αiei +α je j,

so αi = β = α j. Thus A is a scalar matrix.

Thus we see that Z(GL(n,F)) is the group of scalar matrices, and is isomorphic to
F× (so is cyclic of order q−1 if F = Fq).

We define the projective general and special linear groups by

PGL(n,F) = GL(n,F)/Z, PSL(n,F) = SL(n,F)/(Z∩SL(n,F)),

where Z = Z(GL(n,q)). Thus, the projective groups are the images of the linear groups
in the action on the projective space Ω, so we can think of them as groups of permu-
tations of this space.

We have |PGL(n,q)| = |GL(n,q)|/(q− 1) = |SL(n,q)|. What is the order of
PSL(n,q)?
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The kernel of the action of SL(n,F) on the projective space consists of the scalar
matrices λ I with determinant 1, that is, for which λ n = 1. If F = Fq, then the mul-
tiplicative group is cyclic of order q− 1, and the number of solutions of λ n = 1 is
gcd(n,q−1). So we have

|PSL(n,q)|= |SL(n,q)|/gcd(n,q−1).

In particular, if gcd(n,q−1) = 1, then PSL(n,q) = PGL(n,q) = SL(n,q): for in this
case, the first group is a subgroup of the second and a quotient of the third, but all
three have the same order.

For n = 2, we find that

|PSL(2,q)|=
{

(q+1)q(q−1) if q is a power of 2,
(q+1)q(q−1)/2 if q is odd.

In this case, the number of points of Ω is (q2−1)/(q−1) = q +1, and so PGL(2,q)
and PSL(2,q)| are subgroups of the symmetric group Sq+1. We examine the first few
cases.

q = 2: PSL(2,2) = PGL(2,2) is a subgroup of S3 of order 3 · 2 · 1 = 6; so it is
isomorphic to S3.

q = 3: PGL(2,3) is a subgroup of S4 of order 4 ·3 ·2 = 24; so PGL(2,3)∼= S4. Also
PSL(2,3) is a subgroup of index 2, so PSL(2,3)∼= A4.

q = 4: PGL(2,4)= PSL(2,4) is a subgroup of S5 of order 5 ·4 ·3 = 60; so PSL(2,4)∼=
A5.

q = 5: PGL(2,5) is a subgroup of S6 of order 6 ·5 ·4 = 120, and hence index 6; so it
is the stabiliser of a synthematic total, and hence is isomorphic to S5. Moreover,
PSL(2,5) is a subgroup of index 2, so is isomorphic to A5.

q = 7: PSL(2,7) has order 8 ·7 ·6/2 = 168. It turns out to be isomorphic to the group
we met on Problem Sheet 1.

There is a simpler way to think of the action of PSL(2,F) on the projective line.
The 1-dimensional subspaces of F2 are of two types: those with a unique spanning
vector with first coordinate 1, say (1,x) for x ∈ F ; and one spanned by (0,1). We
denote points of the first type by the corresponding field element x, and the point of
the second type by ∞. Then the elements of PGL(2,F) are the linear fractional maps

x 7→ ax+b
cx+d

for a,b,c,d ∈ F , ad−bc 6= 0, with the “natural” conventions for dealing with ∞: for
a 6= 0 we have a/0 = ∞, a∞ = ∞, and (b∞)/(a∞) = b/a; also ∞ + c = ∞ for any c.
The group PSL(2,F) consists of those linear fractional maps with ad−bc = 1.
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6.3 Simplicity of PSL(n,F)

The main result is:

Theorem 6.6 For n ≥ 2 and any field F, the group PSL(n,F) is simple, except in the
two cases n = 2, F = F2 or n = 2, F = F3.

We saw the two exceptional cases (which are isomorphic to S3 and A4) in the
preceding section. The remainder of this section is devoted to the proof of simplicity
in the other cases.

We have two preliminary jobs, concerning transitivity and generation.

Proposition 6.7 For n≥ 2, the group PSL(n,F) acts doubly transitively on the points
of the projective space Ω.

Proof Let 〈v1〉 and 〈v2〉 be two distinct 1-dimensional subspaces of Fn. Then v1 and
v2 are linearly independent, and so for any other pair 〈w1〉 and 〈w2〉, there is a linear
map carrying v1 to w1 and v2 to w2. (Simply extend both (v1,v2) and (w1,w2) to bases,
and take the unique linear map taking the first basis to the second.) If this map has
determinant c, we can follow it by the map multiplying the first basis vector by c−1

and fixing the rest to find one with determinant 1 which does the job.

A transvection is a linear map of a vector space V of the form v 7→ v + f (v)a,
where a ∈ V , f ∈ V ∗ (that is, f is a linear map from V to F), and f (a) = 0. We
will call the corresponding map of the projective space a transvection also, though
geometers sometimes use the term “elation”. A transvection of F2 is also called a
“shear”. We denote the above transvection by T (a, f ).

For a 6= 0, let A(a) be the set of all transvections T (a, f ) with given a, as f runs
over all elements of V ∗ satisfying f (a) = 0. Since T (a, f1)T (a, f2) = T (a, f1 + f2),
we see that A(a) is an abelian group isomorphic to Ann(a), the annihilator of a, a
subspace of codimension 1 in V ∗.

Any transvection belongs to SL(n,F). (Transvections have determinant 1 since
they are represented by strictly upper triangular matrices with respect to a suitable
basis. Indeed, if we let a be the first vector in a basis, then a transvection is represented
by the matrix 

1 0 0 . . . 0
∗ 1 0 . . . 0
...

... . . . ...
...

∗ 0 0 . . . 1


whose first column represents the element f ∈V ∗.
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The transvection group A(a) acts faithfully on the projective space, since it is
clearly disjoint from the group Z of scalar matrices (the kernel of the action). It is
obviously normal in the stabiliser of a, since it is easy to check that g−1A(a)g = A(ag)
for any g ∈ PSL(n,F).

Proposition 6.8 For n ≥ 2, the group PSL(n,F) is generated by transvections.

Proof We use induction on n.
For n = 2, represent PSL(2,F) as the group of linear fractional transformations.

The transvections with a = 〈(0,1)〉 are the maps of the form x 7→ x + a (fixing ∞);
they form a group acting transitively on the points different from ∞. So the group H
generated by all transvections is 2-transitive. It suffices now to show that the stabiliser
of two points in H is the same as that in PSL(2,F).

Now the stabiliser of ∞ and 0 in PSL(2,F) is the group of maps of the form x 7→
ax/d with ad = 1, in other words, x 7→ a2x. We have to show that we can generate this
map by transvections, which we show by the following calculation:(

1 1
0 1

)(
1 0

a−1 1

)(
1 −a−1

0 1

)(
1 0

a−a2 1

)
=

(
a 0
0 a−1

)
.

Now suppose the result is true for n− 1. Let H be the subgroup of PSL(n,F)
generated by transvections. First, we observe that G is transitive on the projective
line, since given two subspaces 〈a〉 and 〈b〉, we have transvections of 〈a,b〉 fixing
a complement pointwise, and in the group they generate we can map one point to
the other. So it suffices to show that the stabiliser of a point 〈a〉 is generated by
transvections.

Now the stabiliser of 〈a〉 in G contains all the transvections of PSL(n−1,F) acting
on the quotient space V/〈a〉. By induction, these generate PSL(n− 1,F). So if we
take an arbitrary element of PSL(n,F) fixing 〈a〉, we can multiply it by a suitable
product of transvections so that on the quotient space it is diagonal with all but one
diagonal entry equal to 1. That is, we can reduce to a matrix of the form

λ 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
x1 x2 . . . xn−1 λ−1

 .

By further multiplication by elations we can reduce to the case where x1 = . . . =
xn−1 = 0. Now apart from the identity in the middle, we have just the matrix(

λ 0
0 λ−1

)
which is dealt with as in the case n = 2.
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Proof of the Theorem First, we recall the statement of Iwasawa’s Lemma:

Theorem 6.9 Let G be a group with a faithful primitive action on Ω. Suppose that
there is an abelian normal subgroup A of Stab(α) with the property that the conju-
gates of A generate G. Then any non-trivial normal subgroup of G contains G′. In
particular, if G = G′, then G is simple.

We will take G = PSL(n,F) acting on Ω. (The action is doubly transitive and
hence primitive.) We have seen that the transvection group A(a) is abelian and normal
in the stabiliser of 〈a〉, and that its conjugates generate G. So only one thing remains
to be proved:

Proposition 6.10 For n ≥ 2, the group PSL(n,F) is equal to its derived group except
in the cases n = 2, F = F2, and n = 2, F = F3.

Proof Since all transvection groups are conjugate, it suffices to find a transvection
group in the derived group; that is, to express the elements of one transvection group
as commutators.

Suppose first that |F |> 3. It suffices to do the case n = 2, since all the calculations
below can be done in the upper left-hand corner of a matrix with the identity in the
bottom right and zeros elsewhere. Since |F |> 3, there is an element a ∈ F satisfying

a2 6= 0,1. Then SL(2,F) contains the matrix
(

a 0
0 a−1

)
, as we saw above; and

(
1 −x
0 1

)(
a 0
0 a−1

)(
1 x
0 1

)(
a−1 0
0 a

)
=

(
1 (a2−1)x
0 1

)
,

and (a2−1)x runs through F as x does.
Now suppose that n ≥ 3, and that |F |= 2 or |F |= 3 (indeed this argument works

for all F). Again we need only consider 3×3 matrices. We have1 −x 0
0 1 0
0 0 1

1 0 0
0 1 −1
0 0 1

1 x 0
0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

 =

1 0 x
0 1 0
0 0 1

 .

The proof is complete.
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