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Notes 4 Autumn 2011

4 More on group actions
We saw when we considered group actions before that any action of a group can
be “decomposed” into orbits, so that the group has a transitive action on each orbit.
In this section we look further at transitive actions, and show that all the different
transitive actions of a group can be recognised in terms of the subgroup structure of
the group. We define primitivity of an action, and examine how to recognise this in
group-theoretic terms and its consequences for normal subgroups. We also look at
the stronger notion of double transitivity. After some examples, we turn to Iwasawa’s
Lemma, which will enable us to show that certain groups are simple.

4.1 Coset actions
Let H be a subgroup of the group G. We will consider the set of right cosets of H in
G:

cos(H,G) = {Hg : g ∈ G}.

Sometimes this is written as H\G, but this is too close to the notation H \G for set
difference so I will avoid it. Sometimes it is written [G:H].

Now G acts on cos(H,G) by right multiplication. Formally, using µ(x,g) for the
action of the permutation corresponding to g on the element x, the action is given by

µ(Hx,g) = H(xg).

Fortunately, we can write this in the briefer form (Hx)g = H(xg) without risk of too
much confusion.

Note that the action of G on cos(H,G) is transitive; for given any two cosets Hx
and Hy, we have (Hx)(x−1y) = Hy. The important thing is that every transitive action
can be realised in this way, in a sense which we now explore.
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Let G have actions on two sets Ω1 and Ω2. An isomorphism between these actions
is a bijection f : Ω1 → Ω2 such that (αg) f = (α f )g for all g ∈ G. Here the left-hand
side means “apply the group element g to α , in the given action on Ω1, and then map
across to Ω2 using f ”, while the right-hand side means “map to Ω2 using f , and then
apply g using the action on Ω2”. Another way that this is commonly expressed is
that the following diagram commutes, in the sense that all routes through the diagram
following the arrows give the same result:

Ω1
f→ Ω2

g↓ ↓g

Ω1
f→ Ω2

The gs on left and right refer to the two actions.
Recall that, if G acts on Ω, then the stabiliser Stab(α) of a point α is

Stab(α) = {g ∈ G : αg = α}.

Theorem 4.1 (a) Any transitive action of a group G on a set Ω is isomorphic to the
action of G on the coset space cos(H,G), where H = Stab(α) for some α ∈ Ω.

(b) The actions of G on the coset spaces cos(H,G) and cos(K,G) are isomorphic if
and only if the subgroups H and K are conjugate (that is, K = g−1Hg for some
g ∈ G).

Proof I will prove the first part; the second is a (non-trivial) exercise. The proof is
just an adaptation of the proof of the Orbit-Stabiliser Theorem. If G acts transitively
on Ω, we saw that there is a bijection between Ω and the set of subsets X(α,β ) of G
for fixed α (as β ranges over Ω), where

X(α,β ) = {g ∈ G : αg = β}.

We saw, furthermore, that X(α,β ) is a right coset of Stab(α), and that every right
coset arises in this way. Now it is a fairly routine exercise to check that the bijection
from Ω to cos(Stab(α),G) taking β to X(α,β ) is an isomorphism.

Example Let G be the dihedral group D6 of symmetries of an equilateral triangle.
Let Ω1 be the set of three vertices of the triangle, and Ω2 the set of three edges. Show
that G acts transitively on both these sets, and that the map f which takes each vertex
to the opposite edge is an isomorphism of actions.

2



4.2 Primitivity
Let G act transitively on a set Ω, with |Ω| > 1. A congruence, or G-congruence, on
Ω is an equivalence relation on Ω which is preserved by G (that is, if α ≡ β , then
(αg) ≡ (βg) for all g ∈ G). An equivalence class of a congruence is called a block.
Note that, if B is a block, then so is Bg for any g ∈ G.

There are always two trivial congruences:

equality: α ≡ β if and only if α = β ;

the universal relation: α ≡ β for all α,β ∈ Ω.

The action is called imprimitive if there is a non-trivial congruence, and primitive if
not.

Example Let G be the symmetry group of a square (the dihedral group of order 8),
acting on Ω, the set of four vertices of the square. The relation ≡ defined by α ≡ β if
α and β are equal or opposite is a congruence, with two blocks of size 2.

Proposition 4.2 Let G act transitively on Ω. A non-empty subset B of Ω is a block if
and only if, for all g ∈ G, either Bg = B or B∩Bg = /0.

Proof If B is a block, then so is Bg; and equivalence classes are equal or disjoint.
Conversely, suppose that B is a non-empty set such that B = Bg or B∩Bg = /0

for all g. Then for any h,k ∈ G, we have Bh = Bk or Bh∩Bk = /0. (For Bh∩Bk =
(B∩Bkh−1)h.) So the images of B are pairwise disjoint. By transitivity, every point of
Ω is covered by these images. So they form a partition, which is the set of equivalence
classes of a congruence.

We saw that every transitive action is isomorphic to a coset space: how do we
recognise primitive actions? A subgroup H of G is maximal if H < G but there is no
subgroup K satisfying H < K < G.

Proposition 4.3 Let H be a proper subgroup of G. Then the action of G on cos(H,G)
is primitive if and only if H is a maximal subgroup of G.

Proof Suppose that H < K < G, and let B be the set of cosets of H which are con-
tained in K. Then B satisfies the conditions of the previous proposition. For take a
coset Hk with k ∈ K. For any g ∈ G,

• if g ∈ K, then Hkg ∈ B, so Bg = B;

• if g /∈ K, then Hkg /∈ B, so B∩Bg = /0.
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Conversely, suppose that G acts imprimitively on cos(H,G); let B be a block con-
taining the coset H, and K = {g ∈ G : Bg = B}. Then K is a subgroup of G, and
H < K < G.

One of the important properties of primitive actions is the following strong restric-
tion on normal subgroups:

Proposition 4.4 Let G act primitively on Ω, and let N be a normal subgroup of G.
Then either N acts trivially on Ω (that is, N lies in the kernel of the action), or N acts
transitively on Ω.

Proof We show that, for any transitive action of G, the orbit relation of the normal
subgroup N is a congruence. It follows that, if the action is primitive, then either all
orbits have size 1, or there is a single orbit.

So let α ≡ β if αh = β for some h ∈ N. Then for any g ∈ G, (αg)(g−1hg) = βg,
and g−1hg ∈ N by normality; so αg ≡ βg. Thus ≡ is indeed a congruence.

Example If G is the group of symmetries of a square, then the subgroup of order 2
generated by the 180◦ rotation is normal; its orbit relation is the congruence we found
earlier.

Remark Let G act transitively on an n-element set. If ≡ is a congruence with l
classes, then each class has the same size k, and kl = n. If n is prime, then necessarily
k = 1 or k = n. So:

A transitive action on a prime number of points is primitive.

Exercise Consider the regular action of G on itself by right multiplication. Show
that there is a congruence ≡H for each subgroup H of G, whose classes are the right
cosets of H, and that these are all the congruences.

4.3 Digression: Minimal normal subgroups
A minimal normal subgroup of a group G is a normal subgroup N E G with N 6= {1}
such that, if M EG with M ≤ N, then either M = N or M = {1}.

There is an important result which says:

Theorem 4.5 A minimal normal subgroup of a finite group is isomorphic to the direct
product of a number of copies of a simple group.

4



Since I haven’t given in detail the result for recognising the direct product of more
than two factors, I won’t prove this theorem in general; but I will prove a special case
as an illustration.

Let p be a prime number. An elementary abelian p-group is an abelian group
in which every element different from the identity has order p. By the Fundamental
Theorem of Abelian Groups, such a group is a direct product of cyclic groups of
order p.

Proposition 4.6 An abelian minimal normal subgroup of a finite group is elementary
abelian.

Proof Let N be such a subgroup, and let p be a prime dividing |N|. There is an
element of order p in N. Let M be the set of elements of N with order dividing p.
Then M 6= {1}, and M is a normal subgroup of G (since conjugation preserves both
order and membership in N). So M = N.

Any minimal normal subgroup of a soluble group is abelian. For let G be soluble,
and N a minimal normal subgroup. Then N is soluble, so its derived group N′ satisfies
N′ 6= N; and N′E G, since conjugation preserves both commutators and members of
N. So N′ = {1}, that is, N is abelian.

Here is a slightly unexpected corollary.

Proposition 4.7 Let G be a finite soluble group. Then any maximal subgroup of G
has prime power index.

Proof Let H be a maximal subgroup, and consider the (primitive) action of G on
cos(H,G). The image of this action is a quotient of G, hence is soluble. So we may
assume that the action is faithful.

Let N be a minimal normal subgroup of G. Then N is abelian, and hence an
elementary abelian p-group for some prime p; and N is transitive, since G is primitive
and N 6= {1}. So by the Orbit-Stabiliser Theorem, |cos(H,G)| (the index of H in G)
is a power of p.

4.4 Regular actions
In this section we consider only faithful actions.

An action of G on Ω is regular if it is transitive and the point stabiliser is trivial.
If H is the trivial subgroup, then each coset of H consists of a single element; so

the set cos(H,G) is “essentially” just G. Thus, a regular action of G is isomorphic to
the action on itself by right multiplication.
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(If we did not require the action to be faithful, then we could say that an action is
regular if it is transitive and the point stabiliser H is a normal subgroup of G; such an
action is isomorphic to the action of G/H on itself by right multiplication. In partic-
ular, since every subgroup of an abelian group is normal, we see that every transitive
action of an abelian group is regular.)

We need to look at a fairly technical situation. Let G be a group with a faithful
action on Ω, and N a normal subgroup of G whose action on Ω is regular. Then we can
“identify” Ω with N so that N acts by right multiplication. More precisely, we choose
a fixed reference point α ∈Ω; then there is a bijection between N and Ω, under which
h∈N corresponds to αh∈Ω; this is an isomorphism between the action of N on itself
by right multiplication and the given action.

Can we describe the entire action of G on N? It turns out that there is a nice
description of the subgroup Stab(α) of G:

Under the above bijection, the action of Stab(α) on N by conjugation
corresponds to the given action on Ω.

To show this, take g ∈ Stab(α) and suppose that g maps β to γ . Let h and k be the
elements of N corresponding to β and γ under the bijection: that is, αh = β and
αk = γ . Now

α(g−1hg) = αhg = βg = γ,

since g−1 fixes α . Since there is a unique element of N mapping α to γ , namely k, we
have g−1hg = k, as required.

We will use this analysis when we come to showing the simplicity of the alternat-
ing group.

4.5 Double transitivity
Let G act on Ω, with |Ω|> 1. We say that the action is doubly transitive if, given any
two ordered pairs (α1,α2) and (β1,β2) of distinct elements of Ω, there is an element
g ∈ G satisfying α1g = β1 and α2g = β2.

Here “distinct” means that α1 6= α2 and β1 6= β2, but we don’t say anything about
the relation between α1 and β1, for example. (A permutation cannot map distinct
points to equal points or vice versa.)

Examples 1. The symmetric group Sn acts doubly transitively on the set {1,2, . . . ,n}
for n ≥ 2.

2. The automorphism group of the Fano plane, the group of order 168 on Problem
Sheet 1, acts doubly transitively on the seven points of the plane.

6



Proposition 4.8 A doubly transitive action is primitive.

Proof Let ≡ be a congruence. By the reflexive property, α ≡ α for all α . If α1 ≡ α2
for any single pair (α1,α2) of distinct elements, then β1 ≡ β2 for all distinct pairs, and
≡ is the universal congruence; otherwise, it is the relation of equality.

Remark In a similar way, we can define t-transitivity of an action, for any t ≥ 1.

4.6 Iwasawa’s Lemma
Iwasawa’s Lemma is a technique for proving the simplicity of a group. It looks rather
technical, but we will use it to show that the group PSL(d,F) is simple in most cases.
Though it is technical, fortunately the proof is quite straightforward.

Recall that the derived group, or commutator subgroup, of G is the subgroup G′

generated by all commutators [g,h] = g−1h−1gh for g,h ∈ G. It has the following
properties:

• G′ is a normal subgroup of G;

• G/G′ is abelian;

• if N is a normal subgroup of G such that G/N is abelian, then G′ ≤ N.

Theorem 4.9 Let G be a group with a faithful primitive action on Ω. Suppose that
there is an abelian normal subgroup A of Stab(α) with the property that the conju-
gates of A generate G. Then any non-trivial normal subgroup of G contains G′. In
particular, if G = G′, then G is simple.

Proof Suppose that N is a non-trivial normal subgroup of G. Then N is transitive, so
N 6≤ Stab(α). Since Stab(α) is a maximal subgroup of G, we have N Stab(α) = G.

Let g be any element of G. Write g = nh, where n ∈ N and h ∈ Stab(α). Then

gAg−1 = nhAh−1n−1 = nAn−1,

since A is normal in Stab(α). Since N is normal in G we have gAg−1 ≤ NA. Since the
conjugates of A generate G we see that G = NA.

Hence
G/N = NA/N ∼= A/(A∩N)

is abelian, whence N ≥ G′, and we are done.
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4.7 Exercises
1. Let G be the symmetry group of the cube. Show that the action of G on the set
of vertices of the cube is transitive but imprimitive, and describe all the congruences.
Repeat for the action of G on the set of faces, and on the set of edges.

2. An automorphism of a group G is an isomorphism from G to itself. An inner
automorphism of G is a conjugation map, one of the form cg : x 7→ g−1xg.

(a) Show that the set of automorphisms, with the operation of conjugation, is a
group Aut(G).

(b) Show that the set of inner automorphisms is a subgroup Inn(G) of Aut(G).

(c) Show that Inn(G)∼= G/Z(G), where Z(G) is the centre of G.

(d) Show that Inn(G) is a normal subgroup of Aut(G). (The quotient Aut(G)/ Inn(G)
is defined to be the outer automorphism group Out(G) of G.)

3. Let G be a group. Then there is in a natural way an action of the automorphism
group Aut(G) of G on the set G. The identity is fixed by all automorphisms, so {1} is
an orbit of size 1 for this action.

(a) Suppose that G\{1} is an orbit for Aut(G). Show that all non-identity elements
of G have the same order, and deduce that the order of G is a power of a prime
p, and hence that G is an elementary abelian p-group.

(b) Suppose that Aut(G) acts doubly transitively on G\{1}. Show that either |G|=
2d for some d, or |G|= 3.

(c) Suppose that Aut(G) acts triply transitively on G\{1}. Show that |G|= 4.
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