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Notes 2 Autumn 2011

2 How many groups?

The number of n×n arrays with entries chosen from a set of size n is nn2
. So certainly

this is an upper bound for the number of groups of order n.
In fact one can do much better, using two results from elementary group theory:

the theorems of Lagrange and Cayley.

Theorem 2.1 The number of groups of order n is at most nn log2 n.

Proof By Cayley’s Theorem, every group of order n is isomorphic to a subgroup of
the symmetric group Sn. So if we can find an upper bound for the number of such
subgroups, this will certainly bound the number of groups up to isomorphism.

We use Lagrange’s Theorem in the following way. We say that a set {g1, . . . ,gk} of
elements of a group G generates G if no proper subgroup of G contains all these ele-
ments. Equivalently, every element of G can be written as a product of these elements
and their inverses.

Now we have the following:

Proposition 2.2 A group of order n can be generated by a set of at most log2 n ele-
ments.

To see this, pick a non-identity element g1 of G, and let G1 be the subgroup gen-
erated by g1. If G1 = G, stop; otherwise choose an element g2 /∈ G1, and let G2 be the
subgroup generated by g1 and g2. Continue in this way until we find g1, . . . ,gk which
generate G.

We claim that |Gi| ≥ 2i for i = 1, . . . ,k. The proof is by induction on i. The
assertion is clear for i = 1, since by assumption |G1| > 1, so |G1| ≥ 2. Now suppose
that |Gi| ≥ 2i. Now Gi is a subgroup of Gi+1, and so |Gi| divides |Gi+1|, by Lagrange’s
Theorem; since Gi 6= Gi+1, we have that |Gi+1| ≥ 2|Gi| ≥ 2i+1. So the assertion is
proved by induction.
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Finally, n = |G|= |Gk| ≥ 2k, so k ≤ log2 n.

Thus, to specify a subgroup G of order n of Sn, we only have to pick k = blog2 nc
elements which generate G. There are at most n! choices for each element, so the
number of subgroups is at most

(n!)k ≤ (nn)log2 n = nn log2 n,

since clearly n! ≤ nn.

The revision notes contain a proof that there is a unique group of prime order. Here
are proofs that the numbers of groups of orders 4, 6, 8 are 2, 2 and 5 respectively.

Order 4: Let G be an element of order 4. If G contains an element of order 4,
then it is cyclic; otherwise all its elements apart from the identity have order 2. Let
G = {1,x,y,z}. What is xy? By the cancellation laws, xy cannot be 1 (since xx = 1),
or x, or y; so xy = z. Similarly the product of any two of x,y,z is the third, and the
multiplication table is determined. So there is at most one type of non-cyclic group.
But the group C2×C2 realises this case.

Order 6: Again suppose that there is no element of order 6, so that elements of G
have orders 1, 2 and 3 only. All these orders actually appear [why?]. Let a have order
3 and b order 2. Then it is easy to see that G = {1,a,a2,b,ab,a2b}. We cannot have
ba = ab, since then we would find that this element has order 6. All other possibilities
for ba except ba = a2b are eliminated by the cancellation laws. So ba = a2b, and then
the multiplication table is determined. This case is realised by the symmetric group
S3.

Order 8: If there is an element of order 8, then G is cyclic; if no element has order
greater than 2, then G = C2 ×C2 ×C2 (this is a bit harder). So assume that a is
an element of order 4, and let b be an element which is not a power of a. Then
G = {1,a,a2,a3,b,ab,a2b,a3b}. This time we need to know which of these eight
elements is b2, and which is ba, in order to determine the group. We find that b2 = 1
or b2 = a2, and that ba = ab or ba = a3b. There seem to be four different possibilities;
but two of these turn out to be isomorphic (namely, the cases b2 = 1,ba = ab and
b2 = a2,ba = ab). So there are three different groups of this form. All of them actually
occur: they are C4 ×C2 and the dihedral and quaternion groups. These together with
the two we already found make five altogether.
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