
MTHM024/MTH714U Group Theory

Notes 1 Autumn 2011

1 The Fundamental Theorem of Finite Abelian Groups
We can’t describe all the groups of order n, but at least we can describe the abelian
groups:

Theorem 1.1 Any finite abelian group G can be written in the form

G ∼= Cn1 ×Cn2 ×·· ·×Cnr ,

where 1 < n1 | n2 | · · · | nr. Moreover, if also

G ∼= Cm1 ×Cm2 ×·· ·×Cms,

where 1 < m1 | m2 | · · · | ms, then r = s and ni = mi for i = 1,2, . . . ,r.

Remark 1 We need the divisibility condition in order to get the uniqueness part of
the theorem. For example,

C2×C6 ∼= C2×C2×C3;

the first expression, but not the second, satisfies this condition.

Remark 2 The proof given below is a kludge. There is an elegant proof of the
theorem, which you should meet if you study Rings and Modules, or which you can
read in a good algebra book. An abelian group can be regarded as a module over the
ring Z, and the Fundamental Theorem above is a special case of a structure theorem
for finitely-generated modules over principal ideal domains.

We need a couple of preliminaries before embarking on the proof. The exponent of
a group G is the smallest positive integer n such that gn = 1 for all g∈G. Equivalently,
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it is the least common multiple of the orders of the elements of G. Note that the
exponent of any subgroup or factor group of G divides the exponent of G; and, by
Lagrange’s Theorem, the exponent of a group divides its order.

For example, the symmetric group S3 contains elements of orders 2 and 3, so its
exponent is 6. However, it doesn’t contain an element of order 6.

Lemma 1.2 If G is abelian with exponent n, then G contains an element of order n.

Proof Write n = pa1
1 · · · par

r , where p1, . . . , pr are distinct primes. Since n is the l.c.m.
of orders of elements, there is an element with order divisible by pai

i , and hence some
power of it (say gi) has order exactly pai

i . Now in an abelian group, if two (or more)
elements have pairwise coprime orders, then the order of their product is the product
of their orders. So g1 · · ·gr is the required element.

Proof of the Theorem We will prove the existence, but not the uniqueness. We use
induction on |G|; so we suppose the theorem is true for abelian groups of smaller order
than G.

Let n be the exponent of G; take a to be an element of order n, and let A = 〈a〉,
so A ∼= Cn. Let B be a subgroup of G of largest order subject to the condition that
A∩B = {1}. We claim that

AB = G.

Suppose this is proved. Since A and B are normal subgroups, it follows that G = A×B.
By induction, B can be expressed as a direct product of cyclic groups satisfying the
divisibility condition; and the order of the largest one divides n, since n is the exponent
of G. So we have the required decomposition of G.

Thus it remains to prove the claim. Suppose, for a contradiction, that AB 6= G.
Then G/AB contains an element of prime order p dividing n; so an element x in this
coset satisfies x /∈ AB, xp ∈ AB. Let xp = akb where b ∈ B.

Case 1: p | k. Let k = pl, and let y = xa−l . Then y /∈ B (for if it were, then
x = yal ∈ AB, contrary to assumption.) Now B′ = 〈B,y〉 is a subgroup p times as large
as B with A∩B′ = {1}, contradicting the definition of B. (If A∩B′ 6= 1, then xa−lb∈ A
for some b ∈ B, whence x ∈ AB.)

Case 2: If p does not divide k, then the order of x is divisible by a higher power
of p than the order of a, contradicting the fact that the order of a is the exponent of G.

In either case we have a contradiction to the assumption that AB 6= G. So our claim
is proved.
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Using the uniqueness part of the theorem (which we didn’t prove), we can in prin-
ciple count the abelian groups of order n; we simply have to list all expressions for n as
a product of factors each dividing the next. For example, let n = 72. The expressions
are:

72
2 ·36
2 ·2 ·18
3 ·24
6 ·12
2 ·6 ·6

So there are six abelian groups of order 72, up to isomorphism.

Exercise Let A(n) be the number of abelian groups of order n.

(a) Let p be a prime and a a positive integer. Prove that A(pa) is the number of
partitions of a, that is, the number of expressions for a as a sum of positive
integers, where order is not important).

(b) Show that A(pa)≤ 2a−1 for a≥ 1 and p prime. [Hint: the number of expressions
for a as a sum of positive integers, where order is important, is 2a−1.]

(c) Let n = pa1
1 · · · par

r , where p1, . . . , pr are distinct primes and a1, . . . ,ar are positive
integers. Show that

A(n) = A(pa1
1 ) · · ·A(par

r ).

(d) Deduce that A(n)≤ n/2 for all n > 1.
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