University of London

1 The Fundamental Theorem of Finite Abelian Groups

We can't describe all the groups of order n, but at least we can describe the abelian groups:

Theorem 1.1 Any finite abelian group G can be written in the form

$$
G \cong C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{r}},
$$

where $1<n_{1}\left|n_{2}\right| \cdots \mid n_{r}$. Moreover, if also

$$
G \cong C_{m_{1}} \times C_{m_{2}} \times \cdots \times C_{m_{s}},
$$

where $1<m_{1}\left|m_{2}\right| \cdots \mid m_{s}$, then $r=s$ and $n_{i}=m_{i}$ for $i=1,2, \ldots, r$.

Remark 1 We need the divisibility condition in order to get the uniqueness part of the theorem. For example,

$$
C_{2} \times C_{6} \cong C_{2} \times C_{2} \times C_{3} ;
$$

the first expression, but not the second, satisfies this condition.

Remark 2 The proof given below is a kludge. There is an elegant proof of the theorem, which you should meet if you study Rings and Modules, or which you can read in a good algebra book. An abelian group can be regarded as a module over the ring \mathbb{Z}, and the Fundamental Theorem above is a special case of a structure theorem for finitely-generated modules over principal ideal domains.

We need a couple of preliminaries before embarking on the proof. The exponent of a group G is the smallest positive integer n such that $g^{n}=1$ for all $g \in G$. Equivalently,
it is the least common multiple of the orders of the elements of G. Note that the exponent of any subgroup or factor group of G divides the exponent of G; and, by Lagrange's Theorem, the exponent of a group divides its order.

For example, the symmetric group S_{3} contains elements of orders 2 and 3 , so its exponent is 6 . However, it doesn't contain an element of order 6 .

Lemma 1.2 If G is abelian with exponent n, then G contains an element of order n.
Proof Write $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, where p_{1}, \ldots, p_{r} are distinct primes. Since n is the l.c.m. of orders of elements, there is an element with order divisible by $p_{i}^{a_{i}}$, and hence some power of it (say g_{i}) has order exactly $p_{i}^{a_{i}}$. Now in an abelian group, if two (or more) elements have pairwise coprime orders, then the order of their product is the product of their orders. So $g_{1} \cdots g_{r}$ is the required element.

Proof of the Theorem We will prove the existence, but not the uniqueness. We use induction on $|G|$; so we suppose the theorem is true for abelian groups of smaller order than G.

Let n be the exponent of G; take a to be an element of order n, and let $A=\langle a\rangle$, so $A \cong C_{n}$. Let B be a subgroup of G of largest order subject to the condition that $A \cap B=\{1\}$. We claim that

$$
A B=G .
$$

Suppose this is proved. Since A and B are normal subgroups, it follows that $G=A \times B$. By induction, B can be expressed as a direct product of cyclic groups satisfying the divisibility condition; and the order of the largest one divides n, since n is the exponent of G. So we have the required decomposition of G.

Thus it remains to prove the claim. Suppose, for a contradiction, that $A B \neq G$. Then $G / A B$ contains an element of prime order p dividing n; so an element x in this coset satisfies $x \notin A B, x^{p} \in A B$. Let $x^{p}=a^{k} b$ where $b \in B$.

Case 1: $p \mid k$. Let $k=p l$, and let $y=x a^{-l}$. Then $y \notin B$ (for if it were, then $x=y a^{l} \in A B$, contrary to assumption.) Now $B^{\prime}=\langle B, y\rangle$ is a subgroup p times as large as B with $A \cap B^{\prime}=\{1\}$, contradicting the definition of B. (If $A \cap B^{\prime} \neq 1$, then $x a^{-l} b \in A$ for some $b \in B$, whence $x \in A B$.)

Case 2: If p does not divide k, then the order of x is divisible by a higher power of p than the order of a, contradicting the fact that the order of a is the exponent of G.

In either case we have a contradiction to the assumption that $A B \neq G$. So our claim is proved.

Using the uniqueness part of the theorem (which we didn't prove), we can in principle count the abelian groups of order n; we simply have to list all expressions for n as a product of factors each dividing the next. For example, let $n=72$. The expressions are:

$$
\begin{aligned}
& 72 \\
& 2 \cdot 36 \\
& 2 \cdot 2 \cdot 18 \\
& 3 \cdot 24 \\
& 6 \cdot 12 \\
& 2 \cdot 6 \cdot 6
\end{aligned}
$$

So there are six abelian groups of order 72 , up to isomorphism.

Exercise Let $A(n)$ be the number of abelian groups of order n.
(a) Let p be a prime and a a positive integer. Prove that $A\left(p^{a}\right)$ is the number of partitions of a, that is, the number of expressions for a as a sum of positive integers, where order is not important).
(b) Show that $A\left(p^{a}\right) \leq 2^{a-1}$ for $a \geq 1$ and p prime. [Hint: the number of expressions for a as a sum of positive integers, where order is important, is 2^{a-1}.]
(c) Let $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, where p_{1}, \ldots, p_{r} are distinct primes and a_{1}, \ldots, a_{r} are positive integers. Show that

$$
A(n)=A\left(p_{1}^{a_{1}}\right) \cdots A\left(p_{r}^{a_{r}}\right) .
$$

(d) Deduce that $A(n) \leq n / 2$ for all $n>1$.

