1. (a) Construct addition and multiplication tables for a field with eight elements. [I hope you have met this before, and that this question is revision.]

(b) Prove that any two fields with eight elements are isomorphic. [Hint: you probably used an irreducible polynomial of degree 3 over \(\mathbb{Z}_2 \) in your construction: there are two such polynomials. If you use one polynomial in the construction, show that the field you construct also contains a root of the other polynomial.]

2. Let \(G \) be a subgroup of \(G \). Let \(N_G(H) \) be the normaliser of \(H \) in \(G \), the largest subgroup of \(G \) in which \(H \) is contained as a normal subgroup. Alternatively, \(N_G(H) = \{ g \in G : g^{-1}Hg = H \} \).

 (a) Prove that, in the action of \(G \) on the coset space \(\cos(H, G) \), a coset \(Hg \) is fixed by \(H \) if and only if \(g \in N_G(H) \).

 (b) Suppose that \(|G| = p^n \), where \(p \) is prime, and that \(H < G \). Prove that \(H < N_G(H) \). (Recall that \(H < G \) means “\(H \) is a subgroup of \(G \) and \(H \neq G \).”)

3. Show that the only element in the group \(\text{SL}(2,F) \), where \(F \) is a field whose characteristic is not 2, is \(-I\).

 Deduce that

 (a) \(\text{SL}(2,F) \) does not contain a subgroup isomorphic to \(\text{PSL}(2,F) \);

 (b) if \(F = \text{GF}(q) \) with \(q > 3 \), then the only composition series for \(\text{SL}(2,q) \) is \(\{I\} \triangleleft \{ \pm I \} \triangleleft \text{SL}(2,q) \);

 (c) \(\text{SL}(2,q) \) is not isomorphic to \(C_2 \times \text{PSL}(2,q) \).
This question is quite challenging!

Let G be a group whose order is a power of the prime p. Let N be the subgroup of G generated by pth powers of all elements and commutators of all pairs of elements.

(a) Prove that N is a normal subgroup of G, and that G/N is an elementary abelian p-group.

(b) Prove that, if K is any normal subgroup such that G/K is an elementary abelian p-group, then $N \leq K$.

(c) Prove that every maximal subgroup of G has index p and is normal.

(d) Prove that N is the intersection of all maximal subgroups of G.

(e) Prove that, if the cosets Ng_1, \ldots, Ng_r generate G/N, then the elements g_1, \ldots, g_r generate G.