1 Let H and K be subgroups of a group G.

(a) Show that $H \cap K$ is a subgroup.

(b) Show that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|},$$

where $HK = \{hk : h \in H, k \in K\}$. [Hint: given $x \in HK$, in how many different ways can we write it in the form hk with $h \in H$ and $k \in K$?]

(c) Show that, if H is a normal subgroup of G, then HK is a subgroup of G.

(d) Give an example of subgroups H and K for which HK is not a subgroup.

2 Let A be the group of all complex roots of unity, with the operation of multiplication. Let Q be the group of rational numbers, with the operation of addition. Let $\theta : Q \to A$ be the map given by

$$q\theta = e^{2\pi i q}.$$

Prove that θ is a homomorphism, with image A and kernel \mathbb{Z}. Hence show that $\mathbb{Q}/\mathbb{Z} \cong A$.

Is A isomorphic to the infinite cyclic group C_∞?

3 Verify the following table:

<table>
<thead>
<tr>
<th>Polyhedron</th>
<th>Rotation group</th>
<th>Symmetry group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td>A_4</td>
<td>S_4</td>
</tr>
<tr>
<td>Cube</td>
<td>S_4</td>
<td>$S_4 \times C_2$</td>
</tr>
</tbody>
</table>

(Here C_n is the cyclic group of order n, S_n and A_n the symmetric and alternating groups of degree n.)
Let $n = a_0 + a_1 p + \cdots + a_r p^r$, where p is prime and $0 \leq a_i \leq p-1$ for $i = 0, \ldots, r$, be the expression for n in base p.

(a) Show that the symmetric group S_n contains a subgroup which is the direct product of a_i symmetric groups of degree p^i, for $i = 0, \ldots, r$.

(b) Show that a Sylow p-subgroup of S_{p^i} has order p^m, where $m = 1 + p + \cdots + p^{i-1}$, and construct such a subgroup.

(c) Hence show that S_n has a Sylow p-subgroup.

(d) Use Cayley’s Theorem to show that every finite group has a Sylow p-subgroup.