
MTHM024/MTH714U Group Theory

Problem Sheet 6 Solutions

1 (a) We can map 0 to b by the map x 7→ x +b (that is, x 7→ (1x +b)/(0x +1)), and 0
to ∞ by x 7→ 1/x. So the orbit containing 0 is the whole of F ∪{∞}.

(b) The map x 7→ (ax+b)/(cx+d) maps ∞ to a/c. If this is to be ∞, we must have
c = 0, so that x 7→ (ax+b)/d = (a/d)x+(b/d). Nothing is affected if we take d = 1,
giving the form stated.

This group is transitive on F (we saw this implicitly in (a)), so the result follows
from:

Fact Suppose that G is transitive on Ω, and the stabiliser of a point ω ∈ Ω is tran-
sitive on Ω\{ω}. Then G is doubly transitive on Ω.

Proof Suppose that we want to map (α,β ) to (γ,delta), where α 6= β and γ 6= δ .
Choose g ∈ G mapping α to ω , and g′ ∈ G mapping γ to ω . Then βg and δg′ are
both different from Ω; so choose h ∈ Stab(ω) mapping βg to δg′. Then check that
gh(g′)−1 is the element we are looking for.

(c) If x 7→ ax+b fixes 0, then b = 0, so the stabiliser of ∞ and 0 is the group x 7→ ax
for a ∈ F×. Clearly it is transitive on F \{0}: we can map 1 to a by multiplying by a.

Now a result similar to the Fact above shows that, if G is doubly transitive and the
stabiliser of two points is transitive on the remaining points then G is triply transitive.

Since G is triply transitive, all three-point stabilisers are conjugate; and the sta-
biliser of ∞, 0 and 1 is the identity. (The map x 7→ ax maps 1 to 1 if and only if
a = 1.)

2 Suppose that G is a simple group of order pqr, where p > q > r. The number of
Sylow p-subgroups is congruent to 1 mod p and divides qr; it cannot be 1 (since G is
simple), q or r (since it is at least p+1), so must be qr.

Now the Sylow p-subgroups between them contain the identity and qr(p−1) ele-
ments of order p (since any two intersect only in the identity).
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Similarly, the number of Sylow q-subgroups is congruent to 1 mod q and divides
pr, so must be either p or pr, giving us at least p(q−1) elements of order q. Similarly,
there are at least q(r−1) elements of order r. So

1+qr(p−1)+ p(q−1)+q(r−1)≤ pqr,

which is obviously false.

3 The proof that G is a group is all straightforward except for the associative law,
which requires a lot of case-by-case analysis. Then the proof that it is an elementary
abelian 2-group is straightforward.

For the associative law, the cases where one or more of the three terms is 0 are all
trivial. The case where the first and second, or second and third, are equal are also
trivial. The case where the first and last elements are equal holds since x +(y + x) =
(x+ y)+x by commutativity. I reckon that the following cases need to be considered:

• {a,b}, {a,c}, {a,d};

• {a,b}, {a,c}, {b,c};

• {a,b}, {a,c}, {b,d};

• {a,b}, {a,c}, {c,d};

• {a,b}, {a,c}, {d,e};

• {a,b}, {c,d}, {a,e};

• {a,b}, {c,d}, {c,e};

• {a,b}, {c,d}, {e, f}.

Here is a different argument avoiding cases.

Step 1: The set of all subsets of {1, . . . ,n}, with the operation of symmetric differ-
ence, is an elementary abelian 2-group. (Mapping each subset A to the n-tuple
of 0s and 1s having 1s in the positions of A and 0s elsewhere is a bijection to
(Z2)n, and it is easy to see that it is a group isomorphism.)

Step 2: The set of subsets of even cardinality is a subgroup W , and the set { /0,{1, . . . ,n}}
is a subgroup U .

Step 3: If n is even, then U ≤W , and so W/U is an elementary abelian 2-group of
order 2n−2.
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Step 4: If n = 6, then every coset of U apart from U itself has the form {{a,b},{c,d,e, f}}.
Choose {a,b} as the coset representative, and check that the group operation
takes exactly the form given in the question (where 0 denotes the coset U).

An elementary abelian 2-group is the additive group of a vector space over F2,
where scalar multiplication is given by 0v = 0 and 1v = v. Any group automorphism
is a vector space automorphism. So the automorphism group of (V,⊕) is GL(4,2). But
clearly S6, acting by permuting the elements of the sets (so that 0g = 0 and {a,b}g =
{ag,bg}) is a group of automorphisms.

The index is (24−1)(24−2)(24−22)(24−23)/6! = 28.

Remark In fact, GL(4,2) is isomorphic to the alternating group A8. The embedding
of S6 into A8 is given by the following map:

g ∈ S6 7→
{

g if g is an even permutation;
g(7,8) if g is an odd permutation.

If you are interested in classical groups, I will mention that S6 is isomorphic to the
symplectic group Sp(4,2), which naturally occurs as a subgroup of GL(4,2).

4 (a) Immediate from Sylow’s Theorem.
(b) G acts on the set of eight Sylow 7-subgroups; the stabiliser of one such sub-

group P is its normaliser N(P). Now P is cyclic of order 7; we can take it to be
generated by the map x 7→ x + 1 of Z7. The normaliser of this subgroup in S7 can be
shown to be the group of maps x 7→ ax + b where a,b ∈ Z7 and a 6= 0, of order 42.
A subgroup of order 21 must contain P, and must consist of maps x 7→ ax + b where
a runs through a subgroup of order 3 of the multiplicative group of Z7, necessarily
{1,2,4}.

G is doubly transitive by the fact proved in Question 1.
The maps x 7→ ax for a = 1,2,4 form a subgroup of order 3, necessarily a Sylow

3-subgroup Q.
(c,d) By double transitivity there is an element t interchanging ∞ and 0; it must

normalise Q, since Q is the two-point stabiliser, and must consist of four 2-cycles (the
only alternative is 3, and then it would be an odd permutation). If it were to fix the
two orbits of Q it would fix a point in each and have only three 2-cycles.

(e) There are not too many possibilities for t; laborious calculation show that, in all
cases except that given, we can obtain a non-identity permutation fixing three points
from the ones we are given.

(f) The group H generated by N and t is transitive, and contains N, the stabiliser
of ∞; so it must be equal to G. (Both G and H contain N as a subgroup of index 8, so
they are equal.)
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(g) As noted, we have shown that G ≤ PSL(2,7). Both groups have order 168, so
they are equal.

5 This can be done by hard work using the Fundamental Theorem of Finite Abelian
Groups. Here is a trick which makes it easier.

Let A be a finite abelian group of order n. Let A∗ be the set of all homomorphisms
from A to the multiplicative group of nth roots of unity in the complex numbers. Then
the operation of multiplication (that is, a(φψ) = (aφ)(aψ)) makes A∗ a group. By
using the FTFAG, we can see that A∗ is a group isomorphic to A.

Now if B≤ A, let B† be the set of elements of A∗ which are the identity on B. Then
B† is the kernel of a homomorphism from A∗ to B∗, whose image is B∗; so A∗/B† ∼= B.
Thus A has a subgroup C with A/C ∼= B; and C ∼= A/B, by considering (A∗)∗, which is
isomorphic to A.

The infinite cyclic group Z has the property that all its subgroups are infinite cyclic
groups (the groups nZ for positive integers n) and all its quotients are finite cyclic
groups Z/nZ. Clearly it doesn’t have this property the other way round.

The quaternion group of order 8 has four non-trivial subgroups (all normal), once
C2 and three C4s. but Q8/C2 ∼= V4, which is not in the list of subgroups.
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