Much of the enumerative combinatorics of sets and functions can be generalised in a manner which, at first sight, seems a bit unmotivated. In this chapter, we develop a small amount of this large body of theory.

Motivation

We can look at q-analogues in several ways:

- The q-analogues are, typically, formulae which tend to the classical ones as $q \to 1$. Most basic is the fact that
 \[
 \lim_{q \to 1} \frac{q^a - 1}{q - 1} = a
 \]
 for any real number a (this is immediate from l’Hôpital’s rule).

- There is a formal similarity between statements about subsets of a set and subspaces of a vector space, with cardinality replaced by dimension. For example, the inclusion-exclusion rule
 \[
 |U \cup V| + |U \cap V| = |U| + |V|
 \]
 for sets becomes
 \[
 \dim(U + V) + \dim(U \cap V) = \dim(U) + \dim(V)
 \]
 for vector spaces. Now, if the underlying field has q elements, then the number of 1-dimensional subspaces of an n-dimensional vector space is $(q^n - 1)/(q - 1)$, which is exactly the q-analogue of n.

• The analogy can be interpreted at a much higher level, in the language of braided categories. I will not pursue this here. You can read more in various papers of Shahn Majid, for example Braided Groups, J. Pure Appl. Algebra 86 (1993), 187–221; Free braided differential calculus, braided binomial theorem and the braided exponential map, J. Math. Phys. 34 (1993), 4843–4856.

In connection with the second interpretation, note the theorem of Galois:

Theorem 1 The cardinality of any finite field is a prime power. Moreover, for any prime power \(q\), there is a unique field with \(q\) elements, up to isomorphism.

To commemorate Galois, finite fields are called Galois fields, and the field with \(q\) elements is denoted by GF\((q)\).

Definition The Gaussian coefficient, or \(q\)-binomial coefficient, \(\begin{bmatrix} n \\ k \end{bmatrix}_q\), where \(n\) and \(k\) are natural numbers and \(q\) a real number different from 1, is defined by

\[
\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n-1)(q^{n-1}-1) \cdots (q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1) \cdots (q-1)}.
\]

Proposition 2 (a) \(\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}\).

(b) If \(q\) is a prime power, then the number of \(k\)-dimensional subspaces of an \(n\)-dimensional vector space over GF\((q)\) is equal to \(\begin{bmatrix} n \\ k \end{bmatrix}_q\).

Proof The first assertion is almost immediate from \(\lim_{q \to 1} (q^n-1)/(q-1) = n\).

For the second, note that the number of choices of \(k\) linearly independent vectors in GF\((q)^n\) is

\[(q^n-1)(q^{n-1}-1) \cdots (q^{n-k+1}-1),\]

since the \(i\)th vector must be chosen outside the span of its predecessors. Any such choice is the basis of a unique \(k\)-dimensional subspace. Putting \(n = k\), we see that the number of bases of a \(k\)-dimensional space is

\[(q^k-1)(q^{k-1}-1) \cdots (q^{k-k-1}).\]

Dividing and cancelling powers of \(q\) gives the result.
The \(q \)-binomial theorem

The \(q \)-binomial coefficients satisfy an analogue of the recurrence relation for binomial coefficients.

Proposition 3

\[
\begin{align*}
\binom{n}{0}_q &= \binom{n}{n}_q = 1, \\
\binom{n}{k}_q &= \binom{n-1}{k-1}_q + q^k \binom{n-1}{k}_q \quad \text{for } 0 < k < n.
\end{align*}
\]

Proof This comes straight from the definition. Suppose that \(0 < k < n \). Then

\[
\binom{n}{k}_q - \binom{n-1}{k-1}_q = \left(\frac{q^n - 1}{q^k - 1} - 1 \right) \binom{n-1}{k-1}_q = q^k \left(\frac{q^{n-k} - 1}{q^k - 1} \right) \binom{n-1}{k-1}_q = q^k \binom{n}{k-1}_q.
\]

The array of Gaussian coefficients has the same symmetry as that of binomial coefficients. From this we can deduce another recurrence relation.

Proposition 4 (a) For \(0 \leq k \leq n \),

\[
\binom{n}{k}_q = \binom{n}{n-k}_q.
\]

(b) For \(0 < k < n \),

\[
\binom{n}{k}_q = q^{n-k} \binom{n-1}{k-1}_q + \binom{n-1}{k}_q.
\]

Proof (a) is immediate from the definition. For (b),

\[
\begin{align*}
\binom{n}{k}_q &= \binom{n}{n-k}_q \\
&= \binom{n-1}{n-k-1}_q + q^{n-k} \binom{n-1}{n-k}_q \\
&= \binom{n-1}{k}_q + q^{n-k} \binom{n-1}{k-1}_q.
\end{align*}
\]

We come now to the \(q \)-analogue of the binomial theorem, which states the following.
Theorem 5 For a positive integer n, a real number $q \neq 1$, and an indeterminate z, we have

$$\prod_{i=1}^{n}(1 + q^{i-1}z) = \sum_{k=0}^{n}q^{k(k-1)/2}z^{\binom{n}{k}}_q.$$

Proof The proof is by induction on n; starting the induction at $n = 1$ is trivial. Suppose that the result is true for $n - 1$. For the inductive step, we must compute

$$\left(\sum_{k=0}^{n-1}q^{k(k-1)/2}z^{\binom{n-1}{k}}_q\right)(1 + q^{n-1}z).$$

The coefficient of z^k in this expression is

$$q^{k(k-1)/2}\binom{n-1}{k}_q + q^{(k-1)(k-2)/2+n-1}\binom{n-1}{k-1}_q$$

$$= q^{k(k-1)/2}\left(\binom{n-1}{k}_q + q^{n-k}\binom{n-1}{k-1}_q\right)$$

$$= q^{k(k-1)/2}\binom{n}{k}_q$$

by Proposition 4(b).

Elementary symmetric functions

In this section we touch briefly on the theory of elementary symmetric functions.

Let x_1, \ldots, x_n be n indeterminates. For $1 \leq k \leq n$, the kth elementary symmetric function $e_k(x_1, \ldots, x_n)$ is the sum of all monomials which can be formed by multiplying together k distinct indeterminates. Thus, e_k has $\binom{n}{k}$ terms, and

$$e_k(1, 1, \ldots, 1) = \binom{n}{k}.$$

For example, if $n = 3$, the elementary symmetric functions are

$$e_1 = x_1 + x_2 + x_3, \quad e_2 = x_1x_2 + x_2x_3 + x_3x_1, \quad e_3 = x_1x_2x_3.$$

We adopt the convention that $e_0 = 1$.

Newton observed that the coefficients of a polynomial of degree n are the elementary symmetric functions of its roots, with appropriate signs.
Proposition 6 \(\prod_{i=1}^{n}(z-x_i) = \sum_{k=0}^{n} (-1)^k e_k(x_1,\ldots,x_n) z^{n-k}. \)

Consider the generating function for the \(e_k \):

\[E(z) = \sum_{k=0}^{n} e_k(x_1,\ldots,x_n) z^k. \]

A slight rewriting of Newton’s Theorem shows that

\[E(z) = \prod_{i=1}^{n}(1+x_i z). \]

Hence the binomial theorem and its \(q \)-analogue give the following specialisations:

Proposition 7 (a) If \(x_1 = \ldots = x_n = 1 \), then

\[E(z) = (1+z)^n = \sum_{k=0}^{n} \binom{n}{k} z^k, \]

so

\[e_k(1,1,\ldots,1) = \binom{n}{k}. \]

(b) If \(x_i = q^{i-1} \) for \(i = 1,\ldots,n \), then

\[E(z) = \prod_{i=1}^{n}(1+q^{i-1} z) = \sum_{k=0}^{n} q^{k(k-1)/2} z^k \binom{n}{k}_q, \]

so

\[e_k(1,q,\ldots,q^{n-1}) = q^{k(k-1)/2} \binom{n}{k}_q. \]

Partitions and permutations

The number of permutations of an \(n \)-set is \(n! \). The linear analogue of this is the number of linear isomorphisms from an \(n \)-dimensional vector space to itself; this is equal to the number of choices of basis for the \(n \)-dimensional space, which is

\[(q^n - 1)(q^n - q) \cdots (q^n - q^{n-1}). \]

These linear maps form a group, the general linear group \(\text{GL}(n,q) \).

Using the \(q \)-binomial theorem, we can transform this multiplicative formula into an additive formula:
Proposition 8

\[|GL(n, q)| = (-1)^n q^{n(n-1)/2} \sum_{i=0}^{n} (-1)^i q^{i(k+1)/2} \binom{n}{k}_q. \]

Proof We have

\[|GL(n, q)| = (-1)^n q^{n(n-1)/2} \prod_{i=1}^{n} (1 - q^i), \]

and the right-hand side is obtained by substituting \(z = -q \) in the \(q \)-binomial theorem.

The total number of \(n \times n \) matrices is \(q^{n^2} \), so the probability that a random matrix is invertible is

\[p_n(q) = \prod_{i=1}^{n} (1 - q^{-i}). \]

As \(n \to \infty \), we have

\[p_n(q) \to p(q) = \prod_{i \geq 1} (1 - q^{-i}). \]

According to Euler’s Pentagonal Numbers Theorem, we have

\[p(q) = \sum_{k \in \mathbb{Z}} (-1)^k q^{-k(3k-1)/2} = 1 - q^{-1} - q^{-2} + q^{-5} + q^{-7} - q^{-12} - \cdots \]

So, for example, \(p(2) = 0.2887\ldots \) is the limiting probability that a large random matrix over GF(2) is invertible.

What is the \(q \)-analogue of the Stirling number \(S(n, k) \), the number of partitions of an \(n \)-set into \(k \) parts? This is a philosophical, not a mathematical question; I argue that the \(q \)-analogue is the Gaussian coefficient \(\binom{n}{k}_q \).

The number of surjective maps from an \(n \)-set to a \(k \)-set is \(k! S(n, k) \), since the preimages of the points in the \(k \)-set form a partition of the \(n \)-set whose \(k \) parts can be mapped to the \(k \)-set in any order. The \(q \)-analogue is the number of surjective linear maps from an \(n \)-space \(V \) to a \(k \)-space \(W \). Such a map is determined by its kernel \(U \), an \((n-k)\)-dimensional subspace of \(V \), and a linear isomorphism from \(V/U \) to \(W \). So the analogue of \(S(n, k) \) is the number of choices of \(U \), which is

\[\binom{n}{n-k}_q = \binom{n}{k}_q. \]
Irreducible polynomials

Though it is not really a q-analogue of a classical result, the following theorem comes up in various places. Recall that a polynomial of degree n is monic if the coefficient of x^n is equal to 1.

Theorem 9 The number $f_q(n)$ of monic irreducible polynomials of degree n over $\text{GF}(q)$ satisfies

$$\sum_{k|n} kf_q(k) = q^n.$$

Proof We give two proofs, one depending on some algebra, and the other a rather nice exercise in manipulating formal power series.

First proof: We use the fact that the roots of an irreducible polynomial of degree k over $\text{GF}(q)$ lie in the unique field $\text{GF}(q^k)$ of degree k over $\text{GF}(q)$. Moreover, $\text{GF}(q^k) \subseteq \text{GF}(q^n)$ if and only if $k | n$; and every element of $\text{GF}(q^n)$ generates some subfield over $\text{GF}(q)$, which has the form $\text{GF}(q^k)$ for some k dividing n.

Now each of the q^n elements of $\text{GF}(q^n)$ satisfies a unique minimal polynomial of degree k for some k; and every irreducible polynomial arises in this way, and has k distinct roots. So the result holds.

Second proof: All the algebra we use in this proof is that each monic polynomial of degree n can be factorised uniquely into monic irreducible factors. If the number of monic irreducibles of degree k is m_k, then we obtain all monic polynomials of degree n by the following procedure:

- Express $n = \sum a_kk$, where a_k are non-negative integers;
- Choose a_k monic irreducibles of degree k from the set of all m_k such, with repetitions allowed and order not important;
- Multiply the chosen polynomials together.

Altogether there are q^n monic polynomials $x^n + c_1x^{n-1} + \cdots + c_n$ of degree n, since there are q choices for each of the n coefficients. Hence

$$q^n = \sum_k \prod \binom{m_k + a_k - 1}{a_k},$$

where the sum is over all sequences a_1, a_2, \ldots of natural numbers which satisfy $\sum k a_k = n$.

7
Multiplying by \(x^n\) and summing over \(n\), we get

\[
\frac{1}{1 - qx} = \sum_{n \geq 0} q^n x^n
\]

\[
= \sum_{a_1, a_2, \ldots, k \geq 1} \prod_{k \geq 1} \left(\frac{m_k + a_k - 1}{a_k} \right) x^{ka_k}
\]

\[
= \prod_{k \geq 1} \sum_{a \geq 0} \left(\frac{m_k + a - 1}{a} \right) (x^k)^a
\]

\[
= \prod_{k \geq 1} (1 - x^k)^{-m_k}.
\]

Here the manipulations are similar to those for the sum of cycle indices in Chapter 2; we use the fact that the number of choices of \(a\) things from a set of \(m\), with repetition allowed and order unimportant, is \(\binom{m + a - 1}{a}\), and in the fourth line we invoke the Binomial Theorem with negative exponent.

Taking logarithms of both sides, we obtain

\[
\sum_{n \geq 1} \frac{q^n x^n}{n} = -\log(1 - qx)
\]

\[
= \sum_{k \geq 1} -m_k \log(1 - x^k)
\]

\[
= \sum_{k \geq 1} m_k \sum_{r \geq 1} \frac{x^{kr}}{r}.
\]

The coefficient of \(x^n\) in the last expression is the sum, over all divisors \(k\) of \(n\), of \(m_k/r = km_k/n\). This must be equal to the coefficient on the left, which is \(q^n/n\). We conclude that

\[
q^n = \sum_{k|n} km_k,
\]

as required.

Note how the very complicated recurrence relation (1) for the numbers \(m_k\) changes into the much simpler recurrence relation (2) after taking logarithms!

We will see how to solve such a recurrence in the section on Möbius inversion.