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Question1 (a) [3 marks]
Outer measure m*(A) is defined as

' (4) = inf Y 1(1),
nJp=1

the infimum being taken over all sequences {/,} of intervals satisfying A C
U,— I, and where /(1) denotes the length of an interval /.

(b) [6 marks]

If the right-hand side is infinite then the inequality clearly holds; so suppose
Yoo m*(A,) < oo

For any € > 0 and n > 1 there is a sequence of intervals {I}};”_, covering A,
such that

- n ES 8
kzlz(lk) <m (An)+ﬁ.

So the countable collection of intervals {I}! }; ,>1 covers J,_; A, thus

" (U> N

and also
Yy Yiup<Y (m (A,,)-l-ﬁ) =Y m*(A,) €
n=1k=1 n=1 n=1

So

and letting € — 0 completes the proof.

(c) [3 marks]

Let Cy denote the closed unit interval. For n > 1, define C,, to be the union
of 2" disjoint closed intervals obtained by removing the open central interval
of length 1/3" from each of the 2"~! disjoint closed intervals whose union is
Cy—1. Then define C = Ny,>0 Cy,.

(d) [4 marks]

For any n > 0, define the intervals {Il”}‘l”:l by: I{,...,I3, is an enumeration
of the 2" disjoint closed intervals whose union is Cy, and I}' = @ for i > 2".
Clearly {I'}3, is a cover of C (since it is a cover of C,), and ¥;»1 (') =
2"(1/3)" — 0 as n — oo. So C can be covered by a sequence of intervals of
arbitarily small total length, i.e. m*(C) = 0.
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(e) [3 marks]
A subset E C R is measurable if

m*(A) =m"(ANE)+m"(ANE")

for all subsets A C R.
[ Full marks too for giving the condition as simply m*(A) > m*(ANE) +
m*(ANE®), since the reverse inequality always holds. ]

() [3 marks]

A collection of subsets of a non-empty set is a o-field if it contains the empty
set, and is closed under complementation and countable union.

(g) [3 marks]
Clearly (—o0,00) =R = 0° € ., so it remains to check that for every a € R,
the intervals (—o0,a), (—o0,al, (a,o0) and [a,) lie in .Z .
Now (—o0,a) = U,>1(a —n,a) and (—e0,a] = U,>1(a — n,a] and (a,e0) =
Up>1(a,a+n) and |a,o) = U,>1[a,a-+n) are countable unions of members of

M (namely, finite-length intervals), and .# is closed under countable union,
so indeed each of these intervals belongs to .Z .
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Question 2 (a) [3 marks]

f: R — R is measurable if for every interval I, the set f~!(I) is measurable.

(b) [3 marks]
One possible equivalent condition is that f~!([a,e)) € .# for every a € R.

(c) [5 marks]

If f is increasing then for each a € R, the set f~!([a,)) is either empty (if
a > f(x) for all x € R), or the interval [b,0) or (b,ee) for some b(= inf{x €
R : f(x) > a}). These are all measurable sets, so f is measurable.

(d) [7 marks]

First suppose that n is even. If @ < 0 then (f")~!(]a,)) = R, a measurable
set. If a > 0 then (f")~!([a,0)) = {x: f(x) > a'/"} U{x: f(x) < —a'/"} =
fa'/",00)U =1 (—o0, —a'/"], which is measurable because it is the union of
two sets, both of which are measurable due to the measurability of f. There-
fore f" is measurable.

Now suppose 7 is odd. If a > 0 then (f*)"!([a,)) = {x: f(x) > a'/"} =
f~[a'/",e0), which is measurable because f is. If a < 0 then (")~ (g, o)) =
{x: f(x) > —|a|'/"} = f~'[—|a|'/", e0), which is measurable because f is.
Therefore f” is measurable.

(e) [4 marks]

The (standard) example given in class is the following. Define an equivalence
relation on [0, 1] by x ~ y if y — x is rational. This partitions [0, 1] into disjoint
equivalence classes. Now use the axiom of choice to construct a new set
E C [0, 1] which contains exactly one member from each equivalence class.
The set E can be shown to be non-measurable.

() [3 marks]

Let A be a non-measurable set (for example the one of part (e)), and define f
by f(x) =1 forx € A, and f(x) = —1 for x ¢ A. Then f is non-measurable,
since e.g. f~![1,00) = A is not measurable. But f2 = 1, a constant function,
hence f? is measurable.
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Question 3  (a) [3 marks]

A (non-negative) function ¢ : R — R is simple if it is measurable and only
takes finitely many values, i.e. if 9(R) = {ay,...,a,} for some ay,...,a, € R.

(b) [3 marks]
If =37 ,aixa then

/ @dm=Y am(A;NE).
E i=1

(c) [3 marks]

/fdm:sup/ odm,
E ¢ JE

where the supremum is taken over those simple functions ¢ satisfying 0 <
o(x) < f(x) forallx € E.
(d) [4 marks]

Fatou’s Lemma states that if {f,} is a sequence of non-negative measurable
functions (defined on a measurable set E), then

liminf fndm > /(liminf fn)dm

Nn—oo E n—oo

(e) [4 marks]

The Monotone Convergence Theorem asserts that if {f,} is a sequence of
non-negative measurable functions (defined on a measurable set E), and the
sequence { f,(x)}>_, increases monotonically to f(x) for each x € E, then

lim fndm = /fdm.
E

n—oo

() [8 marks]
Now f, < f,so [p fudm < [ fdm, hence
limsup | f,dm < / fdm.
E

n—oo E

Fatou’s Lemma gives

/fdm < liminf fndm

n—oo

and clearly also
liminf | f,dm < limsup | f,dm.
n—eo JE n—oo JE

Combining the above 3 inequalities gives

n—oo

/ fdm = liminf fn dm = limsup fn dm,
E

n—oo

so the sequence [ f, dm converges to [ fdm, as required.
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Question4 (a) [4 marks]

The Dominated Convergence Theorem asserts the following: Suppose E C R
is measurable. Let {f,}_, be a sequence of measurable functions (defined
on E) such that |f,(x)| < g(x) for all n > 1 and almost every x € E, for some
function g which is integrable over E. If f = lim,_,. f,, almost everywhere
then f is integrable over E, and

lim [ fodm = /fdm.
E E

n—oo

(b) [5 marks]

For each n > 1 and x € [1,00) we have

X sin 7wnx X _
|fu(X)] = fu(x) == Tome S d =° 2 =:g(x).

Since g is integrable on [1,), and f,, — 0 pointwise, the Dominated Conver-
gence Theorem gives

lim fndm:/ 0dm=0.
1 1

n—oo

(¢c) [4 marks]
Beppo Levi’s Theorem asserts the following:
Suppose f1, f2,... are measurable, and Y;° | [ | fi| dm < oo.
Then the series ;" | fx(x) converges for almost every x, it defines an inte-
grable function, and [ Y7 | fidm =Y | [ frdm.
(d) [7 marks]

The function ¢(x) := Y;°, |fi(x)| is non-negative and measurable, and by
applying the Monotone Convergence Theorem to the sequence of partial sums

Y71 |fx| we see that
/@dm: Z/!fk\dm.
k=1

The righthand side of this is finite by hypothesis, so ¢ is integrable.

Consequently ¢ is finite almost everywhere, i.e. the series Y7 ;| fk(x)| con-
verges for almost every x.

Hence the series } ;- ; fi(x) converges for almost every x (as required).
Define f : R — R (almost everywhere) by f(x) = Y7 fi(x).

For every n > 1 we have )/, fi < ¢, so the Dominated Convergence Theo-
rem tells us that f = lim, ...}/, fi is integrable (as required), and that

n n n ()
[ram=[1im ¥ feam=1im [ ¥ fidm=lim ¥ [ fidm=Y. [ fidm.
k=1 k=1 k=1 k=1
as required.
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(e) [5 marks]
First note that

Integration by parts gives

(o5}

/ xe*"xdx:x(—l/n)e*"xr;)<> - (—l/n)/ e ™dx=1/n’.
0 0

Defining f, : R — R by f,;(x) = xe™™ for x > 0 and f,(x) =0 for x < 0 we
see that the hypotheses of Beppo Levi’s Theorem are satisfied, and [ f,,dm =
1/ n?, so

/m & dx:/ifdm:i/fdm:il:”—z
0 e —1 n=1 ! n=1 ! n:1n2 6

as required.
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