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Question 1 (a) [3 marks]

Outer measure m∗(A) is defined as

m∗(A) = inf
{In}

∞

∑
n=1

l(In) ,

the infimum being taken over all sequences {In} of intervals satisfying A ⊆⋃
∞
n=1 In, and where l(I) denotes the length of an interval I.

(b) [6 marks]

If the right-hand side is infinite then the inequality clearly holds; so suppose
∑

∞
n=1 m∗(An) < ∞.

For any ε > 0 and n≥ 1 there is a sequence of intervals {In
k }

∞
k=1 covering An

such that
∞

∑
k=1

l(In
k )≤ m∗(An)+

ε

2n .

So the countable collection of intervals {In
k }k,n≥1 covers

⋃
∞
n=1 An, thus

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

∞

∑
k=1

l(In
k )

and also

∞

∑
n=1

∞

∑
k=1

l(In
k )≤

∞

∑
n=1

(
m∗(An)+

ε

2n

)
=

∞

∑
n=1

m∗(An)+ ε .

So

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An)+ ε ,

and letting ε → 0 completes the proof.

(c) [3 marks]

Let C0 denote the closed unit interval. For n ≥ 1, define Cn to be the union
of 2n disjoint closed intervals obtained by removing the open central interval
of length 1/3n from each of the 2n−1 disjoint closed intervals whose union is
Cn−1. Then define C = ∩n≥0Cn.

(d) [4 marks]

For any n ≥ 0, define the intervals {In
i }∞

i=1 by: In
1 , . . . , In

2n is an enumeration
of the 2n disjoint closed intervals whose union is Cn, and In

i = /0 for i > 2n.
Clearly {In

i }∞
i=1 is a cover of C (since it is a cover of Cn), and ∑i≥1 l(In

i ) =
2n(1/3)n→ 0 as n→ ∞. So C can be covered by a sequence of intervals of
arbitarily small total length, i.e. m∗(C) = 0.
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(e) [3 marks]

A subset E ⊂ R is measurable if

m∗(A) = m∗(A∩E)+m∗(A∩Ec)

for all subsets A⊆ R.

[ Full marks too for giving the condition as simply m∗(A) ≥ m∗(A∩ E) +
m∗(A∩Ec), since the reverse inequality always holds. ]

(f) [3 marks]

A collection of subsets of a non-empty set is a σ -field if it contains the empty
set, and is closed under complementation and countable union.

(g) [3 marks]

Clearly (−∞,∞) = R = /0c ∈M , so it remains to check that for every a ∈ R,
the intervals (−∞,a), (−∞,a], (a,∞) and [a,∞) lie in M .

Now (−∞,a) = ∪n≥1(a− n,a) and (−∞,a] = ∪n≥1(a− n,a] and (a,∞) =
∪n≥1(a,a+n) and [a,∞) =∪n≥1[a,a+n) are countable unions of members of
M (namely, finite-length intervals), and M is closed under countable union,
so indeed each of these intervals belongs to M .
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Question 2 (a) [3 marks]

f : R→ R is measurable if for every interval I, the set f−1(I) is measurable.

(b) [3 marks]

One possible equivalent condition is that f−1([a,∞)) ∈M for every a ∈ R.

(c) [5 marks]

If f is increasing then for each a ∈ R, the set f−1([a,∞)) is either empty (if
a > f (x) for all x ∈ R), or the interval [b,∞) or (b,∞) for some b(= inf{x ∈
R : f (x)≥ a}). These are all measurable sets, so f is measurable.

(d) [7 marks]

First suppose that n is even. If a < 0 then ( f n)−1([a,∞)) = R, a measurable
set. If a ≥ 0 then ( f n)−1([a,∞)) = {x : f (x) ≥ a1/n}∪{x : f (x) ≤ −a1/n} =
f−1[a1/n,∞)∪ f−1(−∞,−a1/n], which is measurable because it is the union of
two sets, both of which are measurable due to the measurability of f . There-
fore f n is measurable.

Now suppose n is odd. If a ≥ 0 then ( f n)−1([a,∞)) = {x : f (x) ≥ a1/n} =
f−1[a1/n,∞), which is measurable because f is. If a < 0 then ( f n)−1([a,∞)) =
{x : f (x) ≥ −|a|1/n} = f−1[−|a|1/n,∞), which is measurable because f is.
Therefore f n is measurable.

(e) [4 marks]

The (standard) example given in class is the following. Define an equivalence
relation on [0,1] by x∼ y if y−x is rational. This partitions [0,1] into disjoint
equivalence classes. Now use the axiom of choice to construct a new set
E ⊂ [0,1] which contains exactly one member from each equivalence class.
The set E can be shown to be non-measurable.

(f) [3 marks]

Let A be a non-measurable set (for example the one of part (e)), and define f
by f (x) = 1 for x ∈ A, and f (x) = −1 for x /∈ A. Then f is non-measurable,
since e.g. f−1[1,∞) = A is not measurable. But f 2 ≡ 1, a constant function,
hence f 2 is measurable.
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Question 3 (a) [3 marks]

A (non-negative) function ϕ : R→ R is simple if it is measurable and only
takes finitely many values, i.e. if ϕ(R) = {a1, . . . ,an} for some a1, . . . ,an ∈R.

(b) [3 marks]

If ϕ = ∑
n
i=1 aiχAi then ∫

E
ϕ dm =

n

∑
i=1

aim(Ai∩E) .

(c) [3 marks] ∫
E

f dm = sup
ϕ

∫
E

ϕ dm ,

where the supremum is taken over those simple functions ϕ satisfying 0 ≤
ϕ(x)≤ f (x) for all x ∈ E.

(d) [4 marks]

Fatou’s Lemma states that if { fn} is a sequence of non-negative measurable
functions (defined on a measurable set E), then

liminf
n→∞

∫
E

fn dm ≥
∫

E
(liminf

n→∞
fn)dm .

(e) [4 marks]

The Monotone Convergence Theorem asserts that if { fn} is a sequence of
non-negative measurable functions (defined on a measurable set E), and the
sequence { fn(x)}∞

n=1 increases monotonically to f (x) for each x ∈ E, then

lim
n→∞

∫
E

fn dm =
∫

E
f dm .

(f) [8 marks]

Now fn ≤ f , so
∫

E fn dm≤
∫

E f dm, hence

limsup
n→∞

∫
E

fn dm≤
∫

E
f dm .

Fatou’s Lemma gives ∫
E

f dm ≤ liminf
n→∞

∫
E

fn dm ,

and clearly also

liminf
n→∞

∫
E

fn dm ≤ limsup
n→∞

∫
E

fn dm .

Combining the above 3 inequalities gives∫
E

f dm = liminf
n→∞

∫
E

fn dm = limsup
n→∞

∫
E

fn dm ,

so the sequence
∫

E fn dm converges to
∫

E f dm, as required.
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Question 4 (a) [4 marks]

The Dominated Convergence Theorem asserts the following: Suppose E ⊂ R
is measurable. Let { fn}∞

n=1 be a sequence of measurable functions (defined
on E) such that | fn(x)| ≤ g(x) for all n≥ 1 and almost every x ∈ E, for some
function g which is integrable over E. If f = limn→∞ fn almost everywhere
then f is integrable over E, and

lim
n→∞

∫
E

fn dm =
∫

E
f dm .

(b) [5 marks]

For each n≥ 1 and x ∈ [1,∞) we have

| fn(x)|= fn(x) ==
x sinπnx
1+nx3 ≤

x
nx3 ≤ x−2 =: g(x) .

Since g is integrable on [1,∞), and fn→ 0 pointwise, the Dominated Conver-
gence Theorem gives

lim
n→∞

∫
∞

1
fn dm =

∫
∞

1
0dm = 0 .

(c) [4 marks]

Beppo Levi’s Theorem asserts the following:

Suppose f1, f2, . . . are measurable, and ∑
∞
k=1

∫
| fk|dm < ∞.

Then the series ∑
∞
k=1 fk(x) converges for almost every x, it defines an inte-

grable function, and
∫

∑
∞
k=1 fk dm = ∑

∞
k=1

∫
fk dm.

(d) [7 marks]

The function ϕ(x) := ∑
∞
k=1 | fk(x)| is non-negative and measurable, and by

applying the Monotone Convergence Theorem to the sequence of partial sums
∑

n
k=1 | fk| we see that ∫

ϕ dm =
∞

∑
k=1

∫
| fk|dm .

The righthand side of this is finite by hypothesis, so ϕ is integrable.

Consequently ϕ is finite almost everywhere, i.e. the series ∑
∞
k=1 | fk(x)| con-

verges for almost every x.

Hence the series ∑
∞
k=1 fk(x) converges for almost every x (as required).

Define f : R→ R (almost everywhere) by f (x) = ∑
∞
k=1 fk(x).

For every n ≥ 1 we have ∑
n
k=1 fk ≤ ϕ , so the Dominated Convergence Theo-

rem tells us that f = limn→∞ ∑
n
k=1 fk is integrable (as required), and that∫

f dm =
∫

lim
n→∞

n

∑
k=1

fk dm = lim
n→∞

∫ n

∑
k=1

fk dm = lim
n→∞

n

∑
k=1

∫
fk dm =

∞

∑
k=1

∫
fk dm ,

as required.
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(e) [5 marks]

First note that

x
ex−1

= x
e−x

1− e−x = x
∞

∑
n=1

e−nx =
∞

∑
n=1

xe−nx .

Integration by parts gives∫
∞

0
xe−nx dx = x(−1/n)e−nx∣∣∞

0 − (−1/n)
∫

∞

0
e−nx dx = 1/n2 .

Defining fn : R→ R by fn(x) = xe−nx for x ≥ 0 and fn(x) = 0 for x < 0 we
see that the hypotheses of Beppo Levi’s Theorem are satisfied, and

∫
fn dm =

1/n2, so ∫
∞

0

x
ex−1

dx =
∫ ∞

∑
n=1

fn dm =
∞

∑
n=1

∫
fn dm =

∞

∑
n=1

1
n2 =

π2

6
,

as required.
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