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Standing Assumption: Throughout this exam, the term measurable means Lebesgue
measurable.

Question 1 (a) [3 marks] For a subset A⊆ R, how is its outer measure m∗(A) defined?

(b) [6 marks] Use the definition of m∗ to prove that if A1,A2,A3, . . . are subsets of R, then

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An) .

(c) [3 marks] How is the middle-third Cantor set C defined?

(d) [4 marks] Prove that the middle-third Cantor set C satisfies m∗(C) = 0.

(e) [3 marks] What does it mean to say that a subset of R is measurable?

(f) [3 marks] How is a σ -field defined?

(g) [3 marks] Let M denote the σ -field consisting of measurable subsets of R. Assuming
that all finite-length intervals are measurable, prove that every interval is measurable.

Question 2 (a) [3 marks] What does it mean to say that a function f : R→R is measur-
able?

(b) [3 marks] State, but do not prove, a condition equivalent to the statement that f : R→
R is measurable. (You may wish to choose this condition to be one which can be used
in (c) and (d) below.)

(c) [5 marks] Prove that if f : R→R is increasing (i.e. f (x)≤ f (y) whenever x≤ y) then
it is measurable.

(d) [7 marks] Suppose f : R→ R is measurable. Use the definition of measurability to
prove that for every integer n ≥ 2, the function f n defined by ( f n)(x) = ( f (x))n is
also measurable. [Note: In your proof you should not use the fact that the product of
measurable functions is measurable.]

(e) [4 marks] Assuming the Axiom of Choice, briefly describe (without proof) the con-
struction of a non-measurable set.

(f) [3 marks] Using your answer to part (e), or otherwise, give an example of a non-
measurable function f : R→ R such that f 2 : R→ R is measurable (where f 2 is
defined by ( f 2)(x) = f (x)2).
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Question 3 (a) [3 marks] What does it mean to say that a non-negative function ϕ : R→
R is simple?

(b) [3 marks] For a measurable subset E ⊆R, and simple function ϕ : R→R, how is the
(Lebesgue) integral

∫
E ϕ dm defined?

(c) [3 marks] If f : R→ R is non-negative and measurable, and E ⊆ R is measurable,
how is the (Lebesgue) integral

∫
E f dm defined?

(d) [4 marks] State Fatou’s Lemma for a sequence of measurable functions.

(e) [4 marks] State the Monotone Convergence Theorem.

(f) [8 marks] Prove that Fatou’s Lemma implies the Monotone Convergence Theorem.

Question 4 (a) [4 marks] State the Dominated Convergence Theorem.

(b) [5 marks] Use the Dominated Convergence Theorem to find

lim
n→∞

∫
∞

1
fn dm ,

where for each n≥ 1 the function fn : [1,∞)→ R is defined by

fn(x) =
x sinπnx
1+nx3 .

(c) [4 marks] State Beppo Levi’s Theorem.

(d) [7 marks] Use the Dominated Convergence Theorem to prove Beppo Levi’s Theorem.

(e) [5 marks] Use Beppo Levi’s Theorem, and the fact that ∑n≥1
1
n2 = π2

6 , to prove that

∫
∞

0

x
ex−1

dx =
π2

6
.

End of Paper
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