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Question 1 (a) Outer measure m∗(A) is defined as

m∗(A) = inf
{In}

∞

∑
n=1

l(In) ,

the infimum being taken over all sequences {In} of intervals satisfying A ⊆⋃
∞
n=1 In, and where l(I) denotes the length of an interval I.

(b) It suffices to show that for any ε > 0,

m∗ (A1∪A2)≤ m∗(A1)+m∗(A2)+ ε .

Let {I1
n} be a sequence of intervals covering A1, and {I2

n} a sequence of inter-
vals covering A2, such that

∞

∑
n=1

l(I1
n )≤ m∗(A1)+ ε/2

and
∞

∑
n=1

l(I2
n )≤ m∗(A2)+ ε/2 .

But the sequence of intervals {I1
1 , I2

1 , I1
2 , I2

2 , I1
3 , . . .} covers A1∪A2, so

m∗(A1∪A2)≤
∞

∑
n=1

l(I1
n )+

∞

∑
n=1

l(I2
n )≤ m∗(A1)+m∗(A2)+ ε ,

as required.

(c) If a sequence of intervals {In} covers A then the sequence of translated in-
tervals {In + t} covers A + t. Conversely, if the sequence {Jn} covers A + t
then the sequence {Jn− t} covers A. Moreover, the total length of a sequence
of intervals does not change when we translate each interval by a common
number.

So we have a one-to-one correspondence between the interval coverings of
A and A + t, and this correspondence preserves the total length of the cover-
ing. Thus the infimum of these total lengths, taken over the set of interval
coverings, is the same in both cases. It follows from the definition of m∗ that
m∗(A) = m∗(A+ t), as required.

(d) It means that F contains the empty set, and is closed under complementation
and countable unions.

(e) It means that F is a σ -field, and that µ is a measure, i.e. that µ : F → [0,∞]
satisfies µ( /0) = 0, and if A1,A2 . . . are pairwise disjoint members of F then
µ(∪∞

i=1Ai) = ∑
∞
i=1 µ(Ai).

c© Queen Mary, University of London 2010 MTH716U



3

(f) Clearly 2Ω is a σ -field, so we need only show that µ is a measure.

Certainly µ( /0)= 0, so it remains to check that if A1,A2 . . . are pairwise disjoint
then µ(∪∞

i=1Ai) = ∑
∞
i=1 µ(Ai).

If there exists N such that Ai = /0 for all i > N, then

µ(∪∞
i=1Ai) = µ(∪N

i=1Ai) =
N

∑
i=1

µ(Ai) =
∞

∑
i=1

µ(Ai) .

If such an N does not exist then, because the Ai are pairwise disjoint, ∪∞
i=1Ai

is an infinite set, so µ(∪∞
i=1Ai) = ∞. But also µ(Ai) ≥ 1 for infinitely many

distinct i, so ∑
∞
i=1 µ(Ai) = ∞ = µ(∪∞

i=1Ai).
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Question 2 (a) A subset E ⊂ R is measurable if

m∗(A) = m∗(A∩E)+m∗(A∩Ec)

for all subsets A⊆ R.

[ Full marks too for giving the condition as simply m∗(A) ≥ m∗(A∩ E) +
m∗(A∩Ec), since the reverse inequality always holds. ]

(b) N ⊆R is a null set if m∗(N) = 0, i.e. if for every ε > 0 we can find a sequence
{In} of intervals satisfying N ⊆

⋃
∞
n=1 In and ∑

∞
n=1 l(In) < ε .

(c) If N is a null set then m∗(N) = 0, so for any A⊂ R we have

m∗(A∩N)≤ m∗(N) = 0 ,

and
m∗(A∩Nc)≤ m∗(A) ,

so adding these inequalities gives

m∗(A∩N)+m∗(A∩Nc)≤ m∗(A) ,

thus N is measurable.

(d) One example is the middle-third Cantor set. This is the set A =
⋂

∞
n=1 An,

where A0 = [0,1], and in general An+1 denotes the disjoint union of 2n+1

closed intervals obtained by removing the (open) ‘middle third’ from each of
the 2n disjoint closed intervals whose union is An.

(e) The (standard) example given in class is the following. Define an equivalence
relation on [0,1] by x∼ y if y−x is rational. This partitions [0,1] into disjoint
equivalence classes. Now use the axiom of choice to construct a new set
E ⊂ [0,1] which contains exactly one member from each equivalence class.
The set E can be shown to be non-measurable.

(f) The sequence {B1 \Bn}∞
n=1 is increasing, so the assumption gives

m

(
∞⋃

n=1

B1 \Bn

)
= lim

n→∞
m(B1 \Bn) .

But m(B1) < ∞, so m(B1 \Bn) = m(B1)−m(Bn), thus

m

(
∞⋃

n=1

B1 \Bn

)
= m(B1)− lim

n→∞
m(Bn) .

Now
⋃

∞
n=1 B1 \Bn = B1 \

⋂
∞
n=1 Bn, so

m

(
∞⋃

n=1

B1 \Bn

)
= m(B1 \

∞⋂
n=1

Bn) = m(B1)−m(
∞⋂

n=1

Bn)
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(using that m(B1) < ∞ again).

Combining the previous two displayed equations gives

m(B1)− lim
n→∞

m(Bn) = m(B1)−m(
∞⋂

n=1

Bn) ,

hence m(
⋂

∞
n=1 Bn) = limn→∞ m(Bn) as required.
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Question 3 (a) f : R→ R is measurable if for every interval I, the set f−1(I) is
measurable.

(b) One possible equivalent condition is: f−1((a,∞)) is measurable for every
a ∈ R.

(c) We must show that
B := ( f +g)−1((a,∞))

is a measurable set, for every a ∈ R.

Let {qn} be an enumeration of the rationals. We claim that

B =
∞⋃

n=1

{t : f (t) > qn, g(t) > a−qn} . (1)

To see that (1) is indeed true, note that if t belongs to the set on the righthand
side then for some n we have f (t) > qn and g(t) > a−qn, so f (t)+g(t) > a,
so t ∈ B.

Conversely, if t ∈ B then ( f +g)(t) > a, so f (t) > a−g(t), so we can choose
a rational qn such that f (t) > qn > a− g(t), so t belongs to the set on the
righthand side of (1). So (1) does indeed hold.

Now the righthand side of (1) is a countable union of sets

{t : f (t) > qn, g(t) > a−qn}= f−1((qn,∞))∩g−1((a−qn,∞))

which are measurable because f and g are. Therefore B is a measurable set,
as required.

(d) Note that for any a ∈ R,

(sup
n≥1

fn)−1((a,∞)) =
∞⋃

n=1

f−1
n ((a,∞))

is a measurable set, since it is a union of sets f−1
n ((a,∞)) which are measur-

able because fn is. Therefore supn≥1 fn is a measurable function.

(e) It means that there is some null set A such that f (x) = g(x) for all x ∈ R\A.

(f) Consider the difference function d = g− f . It is zero except on a null set,
so d−1((a,∞)) is a null set if a ≥ 0, and is the complement of a null set if
a < 0. Both null sets and their complements are measurable, hence d is mea-
surable. Therefore g = d + f is measurable, as it is the sum of two measurable
functions.
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Question 4 (a) Fatou’s Lemma states that if { fn} is a sequence of non-negative
measurable functions (defined on a measurable set E), then

liminf
n→∞

∫
E

fn dm ≥
∫

E
(liminf

n→∞
fn)dm .

(b) One example is to choose fn : (0,1)→ R to equal the constant value n on the
sub-interval (0,1/n), and the constant value 0 otherwise. In this case each∫

fn dm = 1, yet fn→ 0 pointwise, so
∫
(liminfn→∞ fn)dm = 0.

(c) The Dominated Convergence Theorem asserts the following: Suppose E ⊂ R
is measurable. Let { fn}∞

n=1 be a sequence of measurable functions (defined
on E) such that | fn(x)| ≤ g(x) for all n≥ 1 and almost every x ∈ E, for some
function g which is integrable over E. If f = limn→∞ fn almost everywhere
then f is integrable over E, and

lim
n→∞

∫
E

fn dm =
∫

E
f dm .

(d) Consider first the case where each fn ≥ 0. Fatou’s Lemma gives:∫
E

f dm≤ liminf
n→∞

∫
E

fn dm .

It is therefore sufficient to show that

limsup
n→∞

∫
E

fn dm≤
∫

E
f dm . (2)

Fatou’s Lemma applied to g− fn gives∫
E

lim
n→∞

(g− fn)dm≤ liminf
n→∞

∫
E
(g− fn)dm .

On the left we have∫
E

lim
n→∞

(g− fn)dm =
∫

E
(g− f )dm =

∫
E

gdm−
∫

E
f dm ,

while on the right we have

liminf
n→∞

∫
E
(g− fn)dm = liminf

n→∞

(∫
E

gdm−
∫

E
fn dm

)
=
∫

E
gdm−limsup

n→∞

∫
E

fn dm .

Combining these we get:∫
E

gdm−
∫

E
f dm≤

∫
E

gdm− limsup
n→∞

∫
E

fn dm .

Finally, subtract
∫

E gdm (which is finite) and multiply by −1 to obtain (2).

Now consider a general (not necessarily negative) sequence { fn}. Since by
hypothesis

−g(x)≤ fn(x)≤ g(x)

we have
0≤ fn(x)+g(x)≤ 2g(x) ,

so applying the result for non-negative functions to the sequence fn +g (since
the function 2g is certainly integrable) gives the result.

c© Queen Mary, University of London 2010 TURN OVER



8

(e) Clearly fn→ f pointwise. But the convergence is dominated: | fn(x)|= | f (x)|
if f (x) ≤ n, and | fn(x)| = n ≤ f (x) = | f (x)| if f (x) ≥ n, so | fn| ≤ | f |, and
| f | is integrable (because f is). The Dominated Convergence Theorem then
implies that

∫
fn dm→

∫
f dm as n→ ∞.
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