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Question 1 (a) [4 marks] For a subset A⊆R, how is its (Lebesgue) outer measure m∗(A)
defined?

(b) [2 marks] What does it mean to say that A⊆ R is a null set?

(c) [3 marks] Briefly explain why every countable subset A⊆ R is null.

(d) [4 marks] Briefly describe (without proof) the construction of an uncountable subset
A⊆ R which is null.

(e) [4 marks] Prove that if A⊆ B⊆ R then m∗(A)≤ m∗(B).

(f) [8 marks] If A1,A2,A3, . . . are subsets of R, prove that

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An) .

Question 2 (a) [3 marks] What does it mean to say that a subset E ⊆ R is (Lebesgue-)
measurable?

(b) [3 marks] Show that if E ⊆R is measurable, then so is its complement Ec (= R\E).

(c) [2 marks] What does it mean to say that Lebesgue measure m is countably additive?

(d) [6 marks] Assuming countable additivity of Lebesgue measure m, show that if the
sets A1 ⊆ A2 ⊆ A3 ⊆ . . . are measurable, then

m

(
∞⋃

n=1

An

)
= lim

n→∞
m(An) .

(e) [8 marks] Using (d) above, or otherwise, show that if A1 ⊇ A2 ⊇ A3 ⊇ . . . are measur-
able, and m(A1) < ∞, then

m

(
∞⋂

n=1

An

)
= lim

n→∞
m(An) .

(f) [3 marks] Give an example of measurable sets A1 ⊇ A2 ⊇ A3 ⊇ . . . such that

m

(
∞⋂

n=1

An

)
6= lim

n→∞
m(An) .

c© Queen Mary, University of London (2009)



MTH716U (2009) Page 3

Question 3 (a) [3 marks] What does it mean to say that a function f : R→R is (Lebesgue)
measurable?

(b) [3 marks] What does it mean to say that a non-negative function ϕ : R→R is simple?

(c) [3 marks] For a measurable subset E ⊆R, and simple function ϕ : R→R, how is the
(Lebesgue) integral

∫
E ϕ dm defined?

(d) [3 marks] If f : R→ R is non-negative and measurable, and E ⊆ R is measurable,
how is the (Lebesgue) integral

∫
E f dm defined?

(e) [4 marks] Let E ⊆ R be measurable, and suppose that f : R→ R and g : R→ R
are non-negative measurable functions, with f (x) ≤ g(x) for all x ∈ E. Show that∫

E f dm≤
∫

E gdm.

(f) [9 marks] If f : R→R is non-negative and measurable, prove that
∫
R f dm = 0 if and

only if f = 0 almost everywhere.

Question 4 (a) [4 marks] State Fatou’s Lemma for a sequence of (Lebesgue) measurable
functions.

(b) [4 marks] State the Monotone Convergence Theorem.

(c) [8 marks] Prove that Fatou’s Lemma implies the Monotone Convergence Theorem.

(d) [4 marks] State the Dominated Convergence Theorem.

(e) [5 marks] Use the Dominated Convergence Theorem to find

lim
n→∞

∫
∞

1
fn dm ,

where for each n≥ 1 the function fn : [1,∞)→ R is defined by

fn(x) =
√

x
1+nx4 .
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