University of London

M. Sci. Examination by Course Unit 2009

MTH716U Measure Theory \& Probability

Duration: 2 hours
Date and time: 28 April 2009

Solutions

Question 1 (a) (Lebesgue) outer measure $m^{*}(A)$ is defined as

$$
m^{*}(A)=\inf _{\left\{I_{n}\right\}} \sum_{n=1}^{\infty} l\left(I_{n}\right)
$$

the infimum being taken over all sequences $\left\{I_{n}\right\}$ of intervals satisfying $A \subseteq$ $\bigcup_{n=1}^{\infty} I_{n}$, and where $l(I)$ denotes the length of an interval I.
(b) $A \subseteq \mathbb{R}$ is a null set if $m^{*}(A)=0$, i.e. if for every $\varepsilon>0$ we can find a sequence $\left\{I_{n}\right\}$ of intervals satisfying $A \subseteq \bigcup_{n=1}^{\infty} I_{n}$ and $\sum_{n=1}^{\infty} l\left(I_{n}\right)<\varepsilon$.
(c) If A is countable, with distinct elements x_{1}, x_{2}, \ldots (the list can be finite or infinite), then we can write it as $A=\bigcup_{n=1}^{\infty} I_{n}$, where either I_{n} is the closed interval $\left[x_{n}, x_{n}\right]$ or the empty set $\left(I_{n}=(5,5)\right.$, say). Now $l\left(I_{n}\right)=0$ for each n, so $\sum_{n=1}^{\infty} l\left(I_{n}\right)=0$, and clearly $A \subseteq \bigcup_{n=1}^{\infty} I_{n}$, so A is null.
(d) One example is the middle-third Cantor set. This is the set $A=\bigcap_{n=1}^{\infty} A_{n}$, where $A_{0}=[0,1]$, and in general A_{n+1} denotes the disjoint union of 2^{n+1} closed intervals obtained by removing the (open) 'middle third' from each of the 2^{n} disjoint closed intervals whose union is A_{n}.
(e) If $A \subseteq B$ then any sequence of intervals $\left\{I_{n}\right\}$ satisfying $B \subseteq \bigcup_{n=1}^{\infty} I_{n}$ also satisfies $A \subseteq \bigcup_{n=1}^{\infty} I_{n}$. So the infimum in the definition of $m^{*}(A)$ is over a larger collection of sequences of intervals than the infimum in the definition of $m^{*}(B)$, hence $m^{*}(A) \leq m^{*}(B)$.
(f) If the right-hand side is infinite then the inequality clearly holds; so suppose $\sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)<\infty$.
For any $\varepsilon>0$ and $n \geq 1$ there is a sequence of intervals $\left\{I_{k}^{n}\right\}_{k=1}^{\infty}$ covering A_{n} such that

$$
\sum_{k=1}^{\infty} l\left(I_{k}^{n}\right) \leq m^{*}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}} .
$$

So the countable collection of intervals $\left\{I_{k}^{n}\right\}_{k, n \geq 1}$ covers $\bigcup_{n=1}^{\infty} A_{n}$, thus

$$
m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} l\left(I_{k}^{n}\right)
$$

and also

$$
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} l\left(I_{k}^{n}\right) \leq \sum_{n=1}^{\infty}\left(m^{*}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}}\right)=\sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)+\varepsilon
$$

So

$$
m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)+\varepsilon
$$

and letting $\varepsilon \rightarrow 0$ completes the proof.

Question 2 (a) E is (Lebesgue-) measurable if

$$
m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

for all subsets $A \subseteq \mathbb{R}$.
(b) Now $\left(E^{c}\right)^{c}=E$, so if $A \subseteq \mathbb{R}$ and $m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$, then

$$
m^{*}\left(A \cap E^{c}\right)+m^{*}\left(A \cap\left(E^{c}\right)^{c}\right)=m^{*}\left(A \cap E^{c}\right)+m^{*}(A \cap E)=m^{*}(A)
$$

(c) Countable additivity means that if the measurable sets B_{1}, B_{2}, \ldots are pairwise disjoint then $m\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} m\left(B_{n}\right)$.
(d) Let $B_{1}=A_{1}$, and $B_{i}=A_{i} \backslash A_{i-1}$ for $i>1$. Then each B_{i} is measurable, and $\bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}$, so countable additivity gives
$m\left(\bigcup_{i=1}^{\infty} A_{i}\right)=m\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} m\left(B_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} m\left(B_{i}\right)=\lim _{n \rightarrow \infty} m\left(\bigcup_{i=1}^{n} B_{i}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)$,
since $A_{n}=\bigcup_{i=1}^{n} B_{i}$.
(e) The sequence $\left\{A_{1} \backslash A_{n}\right\}_{n=1}^{\infty}$ is increasing, so (d) gives

$$
m\left(\bigcup_{n=1}^{\infty} A_{1} \backslash A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{1} \backslash A_{n}\right)
$$

But $m\left(A_{1}\right)<\infty$, so $m\left(A_{1} \backslash A_{n}\right)=m\left(A_{1}\right)-m\left(A_{n}\right)$, thus

$$
m\left(\bigcup_{n=1}^{\infty} A_{1} \backslash A_{n}\right)=m\left(A_{1}\right)-\lim _{n \rightarrow \infty} m\left(A_{n}\right)
$$

Now $\bigcup_{n=1}^{\infty} A_{1} \backslash A_{n}=A_{1} \backslash \bigcap_{n=1}^{\infty} A_{n}$, so

$$
m\left(\bigcup_{n=1}^{\infty} A_{1} \backslash A_{n}\right)=m\left(A_{1} \backslash \bigcap_{n=1}^{\infty} A_{n}\right)=m\left(A_{1}\right)-m\left(\bigcap_{n=1}^{\infty} A_{n}\right)
$$

(using that $m\left(A_{1}\right)<\infty$ again).
Combining the previous two displayed equations gives

$$
m\left(A_{1}\right)-\lim _{n \rightarrow \infty} m\left(A_{n}\right)=m\left(A_{1}\right)-m\left(\bigcap_{n=1}^{\infty} A_{n}\right)
$$

hence $m\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)$ as required.
(f) We might choose $A_{n}=[n, \infty)$. Now $m\left(A_{n}\right)=\infty$ for each n, so

$$
\lim _{n \rightarrow \infty} m\left(A_{n}\right)=\infty \neq 0=m(\emptyset)=m\left(\bigcap_{n=1}^{\infty} A_{n}\right)
$$

Question 3 (a) $f: \mathbb{R} \rightarrow \mathbb{R}$ is (Lebesgue-) measurable if for every interval I, the set $f^{-1}(I)$ is measurable. [There are various well-known equivalent definitions - any of these will also score full marks]
(b) A (non-negative) function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is simple if it is measurable and only takes finitely many values, i.e. if $\varphi(\mathbb{R})=\left\{a_{1}, \ldots, a_{n}\right\}$ for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(c) If $\varphi=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$ then

$$
\int_{E} \varphi d m=\sum_{i=1}^{n} a_{i} m\left(A_{i} \cap E\right)
$$

(d)

$$
\int_{E} f d m=\sup _{\varphi} \int_{E} \varphi d m
$$

where the supremum is taken over those simple functions φ satisfying $0 \leq$ $\varphi(x) \leq f(x)$ for all $x \in E$.
(e) If φ is a simple function satisfying $0 \leq \varphi(x) \leq f(x)$ for all $x \in E$, then also $0 \leq \varphi(x) \leq g(x)$ for all $x \in E$. So the supremum in the definition of $\int_{E} g d m$ is taken over a larger collection of simple functions than the one in the definition of $\int_{E} f d m$, hence $\int_{E} f d m \leq \int_{E} g d m$.
(f) [4 marks] If $f=0$ almost everywhere, and $0 \leq \varphi \leq f$ is simple, then $\varphi=0$ almost everywhere, since neither f nor φ take negative values. Thus $\int_{\mathbb{R}} \varphi d m=$ 0 for all such φ, and hence $\int_{\mathbb{R}} f d m=0$.
[5 marks] Conversely, if $\int_{\mathbb{R}} f d m=0$ then set $E:=\{x \in \mathbb{R}: f(x)>0\}$; we wish to show that $m(E)=0$. For each $n \geq 1$ define

$$
E_{n}:=f^{-1}\left(\left[\frac{1}{n}, \infty\right)\right)
$$

so that $E=\bigcup_{n=1}^{\infty} E_{n}$.
Now $\varphi_{n}:=\frac{1}{n} \chi_{E_{n}}$ is simple, and $\varphi_{n} \leq f$ by definition of E_{n}, so

$$
m\left(E_{n}\right)=n \int_{\mathbb{R}} \varphi_{n} d m \leq n \int_{\mathbb{R}} f d m=0
$$

hence $m(E)=m\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} m\left(E_{n}\right)=0$, as required.

Question 4 (a) Fatou's Lemma states that if $\left\{f_{n}\right\}$ is a sequence of non-negative measurable functions (defined on a measurable set E), then

$$
\liminf _{n \rightarrow \infty} \int_{E} f_{n} d m \geq \int_{E}\left(\liminf _{n \rightarrow \infty} f_{n}\right) d m
$$

(b) The Monotone Convergence Theorem asserts that if $\left\{f_{n}\right\}$ is a sequence of non-negative measurable functions (defined on a measurable set E), and the sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ increases monotonically to $f(x)$ for each $x \in E$, then

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d m=\int_{E} f d m
$$

(c) Now $f_{n} \leq f$, so $\int_{E} f_{n} d m \leq \int_{E} f d m$, hence

$$
\limsup _{n \rightarrow \infty} \int_{E} f_{n} d m \leq \int_{E} f d m
$$

Fatou's Lemma gives

$$
\int_{E} f d m \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d m
$$

and clearly also

$$
\liminf _{n \rightarrow \infty} \int_{E} f_{n} d m \leq \limsup _{n \rightarrow \infty} \int_{E} f_{n} d m
$$

Combining the above 3 inequalities gives

$$
\int_{E} f d m=\liminf _{n \rightarrow \infty} \int_{E} f_{n} d m=\limsup _{n \rightarrow \infty} \int_{E} f_{n} d m
$$

so the sequence $\int_{E} f_{n} d m$ converges to $\int_{E} f d m$, as required.
(d) The Dominated Convergence Theorem asserts the following: Suppose $E \subset \mathbb{R}$ is measurable. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions (defined on E) such that $\left|f_{n}(x)\right| \leq g(x)$ for all $n \geq 1$ and almost every $x \in E$, for some function g which is integrable over E. If $f=\lim _{n \rightarrow \infty} f_{n}$ almost everywhere then f is integrable over E, and

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d m=\int_{E} f d m
$$

(e) For each $n \geq 1$ and $x \in[1, \infty)$ we have

$$
\left|f_{n}(x)\right|=f_{n}(x)=\frac{\sqrt{x}}{1+n x^{4}} \leq \frac{\sqrt{x}}{n x^{4}} \leq x^{-7 / 2}=: g(x) .
$$

Since g is integrable on $[1, \infty)$, and $f_{n} \rightarrow 0$ pointwise, the Dominated Convergence Theorem gives

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} f_{n} d m=\int_{1}^{\infty} 0 d m=0
$$

