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Question 1 (a) (Lebesgue) outer measure m∗(A) is defined as

m∗(A) = inf
{In}

∞

∑
n=1

l(In) ,

the infimum being taken over all sequences {In} of intervals satisfying A ⊆⋃
∞
n=1 In, and where l(I) denotes the length of an interval I.

(b) A⊆R is a null set if m∗(A) = 0, i.e. if for every ε > 0 we can find a sequence
{In} of intervals satisfying A⊆

⋃
∞
n=1 In and ∑

∞
n=1 l(In) < ε .

(c) If A is countable, with distinct elements x1,x2, . . . (the list can be finite or
infinite), then we can write it as A =

⋃
∞
n=1 In, where either In is the closed

interval [xn,xn] or the empty set (In = (5,5), say). Now l(In) = 0 for each n,
so ∑

∞
n=1 l(In) = 0, and clearly A⊆

⋃
∞
n=1 In, so A is null.

(d) One example is the middle-third Cantor set. This is the set A =
⋂

∞
n=1 An,

where A0 = [0,1], and in general An+1 denotes the disjoint union of 2n+1

closed intervals obtained by removing the (open) ‘middle third’ from each of
the 2n disjoint closed intervals whose union is An.

(e) If A⊆ B then any sequence of intervals {In} satisfying B⊆
⋃

∞
n=1 In also satis-

fies A⊆
⋃

∞
n=1 In. So the infimum in the definition of m∗(A) is over a larger col-

lection of sequences of intervals than the infimum in the definition of m∗(B),
hence m∗(A)≤ m∗(B).

(f) If the right-hand side is infinite then the inequality clearly holds; so suppose
∑

∞
n=1 m∗(An) < ∞.

For any ε > 0 and n≥ 1 there is a sequence of intervals {In
k }

∞
k=1 covering An

such that
∞

∑
k=1

l(In
k )≤ m∗(An)+

ε

2n .

So the countable collection of intervals {In
k }k,n≥1 covers

⋃
∞
n=1 An, thus

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

∞

∑
k=1

l(In
k )

and also
∞

∑
n=1

∞

∑
k=1

l(In
k )≤

∞

∑
n=1

(
m∗(An)+

ε

2n

)
=

∞

∑
n=1

m∗(An)+ ε .

So

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An)+ ε ,

and letting ε → 0 completes the proof.
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Question 2 (a) E is (Lebesgue-) measurable if

m∗(A) = m∗(A∩E)+m∗(A∩Ec)

for all subsets A⊆ R.

(b) Now (Ec)c = E, so if A⊆ R and m∗(A) = m∗(A∩E)+m∗(A∩Ec) , then

m∗(A∩Ec)+m∗(A∩ (Ec)c) = m∗(A∩Ec)+m∗(A∩E) = m∗(A) .

(c) Countable additivity means that if the measurable sets B1,B2, . . . are pairwise
disjoint then m(

⋃
∞
n=1 Bn) = ∑

∞
n=1 m(Bn).

(d) Let B1 = A1, and Bi = Ai \Ai−1 for i > 1. Then each Bi is measurable, and⋃
∞
i=1 Bi =

⋃
∞
i=1 Ai, so countable additivity gives

m(
∞⋃

i=1

Ai)= m(
∞⋃

i=1

Bi)=
∞

∑
i=1

m(Bi)= lim
n→∞

n

∑
i=1

m(Bi)= lim
n→∞

m(
n⋃

i=1

Bi)= lim
n→∞

m(An) ,

since An =
⋃n

i=1 Bi.

(e) The sequence {A1 \An}∞
n=1 is increasing, so (d) gives

m

(
∞⋃

n=1

A1 \An

)
= lim

n→∞
m(A1 \An) .

But m(A1) < ∞, so m(A1 \An) = m(A1)−m(An), thus

m

(
∞⋃

n=1

A1 \An

)
= m(A1)− lim

n→∞
m(An) .

Now
⋃

∞
n=1 A1 \An = A1 \

⋂
∞
n=1 An, so

m

(
∞⋃

n=1

A1 \An

)
= m(A1 \

∞⋂
n=1

An) = m(A1)−m(
∞⋂

n=1

An)

(using that m(A1) < ∞ again).

Combining the previous two displayed equations gives

m(A1)− lim
n→∞

m(An) = m(A1)−m(
∞⋂

n=1

An) ,

hence m(
⋂

∞
n=1 An) = limn→∞ m(An) as required.

(f) We might choose An = [n,∞). Now m(An) = ∞ for each n, so

lim
n→∞

m(An) = ∞ 6= 0 = m( /0) = m(
∞⋂

n=1

An) .
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Question 3 (a) f : R→ R is (Lebesgue-) measurable if for every interval I, the
set f−1(I) is measurable. [There are various well-known equivalent defini-
tions - any of these will also score full marks]

(b) A (non-negative) function ϕ : R→ R is simple if it is measurable and only
takes finitely many values, i.e. if ϕ(R) = {a1, . . . ,an} for some a1, . . . ,an ∈R.

(c) If ϕ = ∑
n
i=1 aiχAi then ∫

E
ϕ dm =

n

∑
i=1

aim(Ai∩E) .

(d) ∫
E

f dm = sup
ϕ

∫
E

ϕ dm ,

where the supremum is taken over those simple functions ϕ satisfying 0 ≤
ϕ(x)≤ f (x) for all x ∈ E.

(e) If ϕ is a simple function satisfying 0 ≤ ϕ(x) ≤ f (x) for all x ∈ E, then also
0≤ ϕ(x)≤ g(x) for all x ∈ E. So the supremum in the definition of

∫
E gdm is

taken over a larger collection of simple functions than the one in the definition
of
∫

E f dm, hence
∫

E f dm≤
∫

E gdm.

(f) [4 marks] If f = 0 almost everywhere, and 0≤ϕ ≤ f is simple, then ϕ = 0 al-
most everywhere, since neither f nor ϕ take negative values. Thus

∫
R ϕ dm =

0 for all such ϕ , and hence
∫
R f dm = 0.

[5 marks] Conversely, if
∫
R f dm = 0 then set E := {x ∈ R : f (x) > 0}; we

wish to show that m(E) = 0. For each n≥ 1 define

En := f−1([
1
n
,∞)) ,

so that E =
⋃

∞
n=1 En.

Now ϕn := 1
n χEn is simple, and ϕn ≤ f by definition of En, so

m(En) = n
∫

R
ϕn dm ≤ n

∫
R

f dm = 0 ,

hence m(E) = m(
⋃

∞
n=1 En)≤ ∑

∞
n=1 m(En) = 0, as required.
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Question 4 (a) Fatou’s Lemma states that if { fn} is a sequence of non-negative
measurable functions (defined on a measurable set E), then

liminf
n→∞

∫
E

fn dm ≥
∫

E
(liminf

n→∞
fn)dm .

(b) The Monotone Convergence Theorem asserts that if { fn} is a sequence of
non-negative measurable functions (defined on a measurable set E), and the
sequence { fn(x)}∞

n=1 increases monotonically to f (x) for each x ∈ E, then

lim
n→∞

∫
E

fn dm =
∫

E
f dm .

(c) Now fn ≤ f , so
∫

E fn dm≤
∫

E f dm, hence

limsup
n→∞

∫
E

fn dm≤
∫

E
f dm .

Fatou’s Lemma gives ∫
E

f dm ≤ liminf
n→∞

∫
E

fn dm ,

and clearly also

liminf
n→∞

∫
E

fn dm ≤ limsup
n→∞

∫
E

fn dm .

Combining the above 3 inequalities gives∫
E

f dm = liminf
n→∞

∫
E

fn dm = limsup
n→∞

∫
E

fn dm ,

so the sequence
∫

E fn dm converges to
∫

E f dm, as required.

(d) The Dominated Convergence Theorem asserts the following: Suppose E ⊂ R
is measurable. Let { fn}∞

n=1 be a sequence of measurable functions (defined
on E) such that | fn(x)| ≤ g(x) for all n≥ 1 and almost every x ∈ E, for some
function g which is integrable over E. If f = limn→∞ fn almost everywhere
then f is integrable over E, and

lim
n→∞

∫
E

fn dm =
∫

E
f dm .

(e) For each n≥ 1 and x ∈ [1,∞) we have

| fn(x)|= fn(x) =
√

x
1+nx4 ≤

√
x

nx4 ≤ x−7/2 =: g(x) .

Since g is integrable on [1,∞), and fn→ 0 pointwise, the Dominated Conver-
gence Theorem gives

lim
n→∞

∫
∞

1
fn dm =

∫
∞

1
0dm = 0 .
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