

M. Sci. Examination by Course Unit 2009

MTH716U Measure Theory & Probability

Duration: 2 hours

Date and time: 28 April 2009

Solutions

Question 1 (a) (Lebesgue) outer measure $m^*(A)$ is defined as

$$m^*(A) = \inf_{\{I_n\}} \sum_{n=1}^{\infty} l(I_n),$$

the infimum being taken over all sequences $\{I_n\}$ of intervals satisfying $A \subseteq \bigcup_{n=1}^{\infty} I_n$, and where l(I) denotes the length of an interval I.

- (b) $A \subseteq \mathbb{R}$ is a null set if $m^*(A) = 0$, i.e. if for every $\varepsilon > 0$ we can find a sequence $\{I_n\}$ of intervals satisfying $A \subseteq \bigcup_{n=1}^{\infty} I_n$ and $\sum_{n=1}^{\infty} l(I_n) < \varepsilon$.
- (c) If A is countable, with distinct elements $x_1, x_2, ...$ (the list can be finite or infinite), then we can write it as $A = \bigcup_{n=1}^{\infty} I_n$, where either I_n is the closed interval $[x_n, x_n]$ or the empty set $(I_n = (5, 5), \text{ say})$. Now $l(I_n) = 0$ for each n, so $\sum_{n=1}^{\infty} l(I_n) = 0$, and clearly $A \subseteq \bigcup_{n=1}^{\infty} I_n$, so A is null.
- (d) One example is the middle-third Cantor set. This is the set $A = \bigcap_{n=1}^{\infty} A_n$, where $A_0 = [0, 1]$, and in general A_{n+1} denotes the disjoint union of 2^{n+1} closed intervals obtained by removing the (open) 'middle third' from each of the 2^n disjoint closed intervals whose union is A_n .
- (e) If A ⊆ B then any sequence of intervals {I_n} satisfying B ⊆ ∪_{n=1}[∞] I_n also satisfies A ⊆ ∪_{n=1}[∞] I_n. So the infimum in the definition of m*(A) is over a larger collection of sequences of intervals than the infimum in the definition of m*(B), hence m*(A) ≤ m*(B).
- (f) If the right-hand side is infinite then the inequality clearly holds; so suppose $\sum_{n=1}^{\infty} m^*(A_n) < \infty$.

For any $\varepsilon > 0$ and $n \ge 1$ there is a sequence of intervals $\{I_k^n\}_{k=1}^{\infty}$ covering A_n such that

$$\sum_{k=1}^{\infty} l(I_k^n) \le m^*(A_n) + \frac{\varepsilon}{2^n}.$$

So the countable collection of intervals $\{I_k^n\}_{k,n\geq 1}$ covers $\bigcup_{n=1}^{\infty} A_n$, thus

$$m^*\left(\bigcup_{n=1}^{\infty}A_n\right) \leq \sum_{n=1}^{\infty}\sum_{k=1}^{\infty}l(I_k^n)$$

and also

$$\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}l(I_k^n)\leq \sum_{n=1}^{\infty}\left(m^*(A_n)+\frac{\varepsilon}{2^n}\right)=\sum_{n=1}^{\infty}m^*(A_n)+\varepsilon.$$

So

$$m^*\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}m^*(A_n)+\varepsilon\,,$$

and letting $\varepsilon \to 0$ completes the proof.

© Queen Mary, University of London 2009

Question 2 (a) *E* is (Lebesgue-) measurable if

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$$

for all subsets $A \subseteq \mathbb{R}$.

(b) Now
$$(E^c)^c = E$$
, so if $A \subseteq \mathbb{R}$ and $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$, then
 $m^*(A \cap E^c) + m^*(A \cap (E^c)^c) = m^*(A \cap E^c) + m^*(A \cap E) = m^*(A)$.

- (c) Countable additivity means that if the measurable sets B_1, B_2, \ldots are pairwise disjoint then $m(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} m(B_n)$.
- (d) Let $B_1 = A_1$, and $B_i = A_i \setminus A_{i-1}$ for i > 1. Then each B_i is measurable, and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$, so countable additivity gives

$$m(\bigcup_{i=1}^{\infty} A_i) = m(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} m(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} m(B_i) = \lim_{n \to \infty} m(\bigcup_{i=1}^{n} B_i) = \lim_{n \to \infty} m(A_n),$$

since $A_n = \bigcup_{i=1}^{n} B_i.$

(e) The sequence $\{A_1 \setminus A_n\}_{n=1}^{\infty}$ is increasing, so (d) gives

$$m\left(\bigcup_{n=1}^{\infty}A_1\setminus A_n\right)=\lim_{n\to\infty}m(A_1\setminus A_n).$$

But $m(A_1) < \infty$, so $m(A_1 \setminus A_n) = m(A_1) - m(A_n)$, thus

$$m\left(\bigcup_{n=1}^{\infty}A_1\setminus A_n\right)=m(A_1)-\lim_{n\to\infty}m(A_n)$$

Now $\bigcup_{n=1}^{\infty} A_1 \setminus A_n = A_1 \setminus \bigcap_{n=1}^{\infty} A_n$, so

$$m\left(\bigcup_{n=1}^{\infty}A_1\setminus A_n\right)=m(A_1\setminus\bigcap_{n=1}^{\infty}A_n)=m(A_1)-m(\bigcap_{n=1}^{\infty}A_n)$$

(using that $m(A_1) < \infty$ again).

Combining the previous two displayed equations gives

$$m(A_1) - \lim_{n \to \infty} m(A_n) = m(A_1) - m(\bigcap_{n=1}^{\infty} A_n),$$

hence $m(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} m(A_n)$ as required.

(f) We might choose $A_n = [n, \infty)$. Now $m(A_n) = \infty$ for each *n*, so

$$\lim_{n\to\infty} m(A_n) = \infty \neq 0 = m(\emptyset) = m(\bigcap_{n=1}^{\infty} A_n).$$

© Queen Mary, University of London 2009

TURN OVER

- **Question 3** (a) $f : \mathbb{R} \to \mathbb{R}$ is (*Lebesgue-*) measurable if for every interval *I*, the set $f^{-1}(I)$ is measurable. [There are various well-known equivalent definitions any of these will also score full marks]
 - (b) A (non-negative) function $\varphi : \mathbb{R} \to \mathbb{R}$ is *simple* if it is measurable and only takes finitely many values, i.e. if $\varphi(\mathbb{R}) = \{a_1, \dots, a_n\}$ for some $a_1, \dots, a_n \in \mathbb{R}$.
 - (c) If $\varphi = \sum_{i=1}^{n} a_i \chi_{A_i}$ then

$$\int_E \varphi \, dm = \sum_{i=1}^n a_i m(A_i \cap E)$$

(d)

$$\int_E f \, dm = \sup_{\varphi} \int_E \varphi \, dm$$

where the supremum is taken over those simple functions φ satisfying $0 \le \varphi(x) \le f(x)$ for all $x \in E$.

- (e) If φ is a simple function satisfying 0 ≤ φ(x) ≤ f(x) for all x ∈ E, then also 0 ≤ φ(x) ≤ g(x) for all x ∈ E. So the supremum in the definition of ∫_E g dm is taken over a larger collection of simple functions than the one in the definition of ∫_E f dm, hence ∫_E f dm ≤ ∫_E g dm.
- (f) [4 marks] If f = 0 almost everywhere, and $0 \le \varphi \le f$ is simple, then $\varphi = 0$ almost everywhere, since neither f nor φ take negative values. Thus $\int_{\mathbb{R}} \varphi \, dm = 0$ for all such φ , and hence $\int_{\mathbb{R}} f \, dm = 0$.

[5 marks] Conversely, if $\int_{\mathbb{R}} f \, dm = 0$ then set $E := \{x \in \mathbb{R} : f(x) > 0\}$; we wish to show that m(E) = 0. For each $n \ge 1$ define

$$E_n := f^{-1}(\left[\frac{1}{n},\infty\right)),$$

so that $E = \bigcup_{n=1}^{\infty} E_n$. Now $\varphi_n := \frac{1}{n} \chi_{E_n}$ is simple, and $\varphi_n \le f$ by definition of E_n , so

$$m(E_n) = n \int_{\mathbb{R}} \varphi_n dm \leq n \int_{\mathbb{R}} f dm = 0$$

hence $m(E) = m(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} m(E_n) = 0$, as required.

Question 4 (a) Fatou's Lemma states that if $\{f_n\}$ is a sequence of non-negative measurable functions (defined on a measurable set *E*), then

$$\liminf_{n\to\infty}\int_E f_n\,dm\,\geq\,\int_E (\liminf_{n\to\infty}\,f_n)\,dm\,.$$

(b) The Monotone Convergence Theorem asserts that if {f_n} is a sequence of non-negative measurable functions (defined on a measurable set E), and the sequence {f_n(x)}_{n=1}[∞] increases monotonically to f(x) for each x ∈ E, then

$$\lim_{n\to\infty}\int_E f_n dm = \int_E f dm.$$

(c) Now $f_n \leq f$, so $\int_E f_n dm \leq \int_E f dm$, hence

$$\limsup_{n\to\infty}\int_E f_n\,dm\leq\int_E f\,dm\,.$$

Fatou's Lemma gives

$$\int_E f\,dm\,\leq\,\liminf_{n\to\infty}\int_E f_n\,dm\,,$$

and clearly also

$$\liminf_{n\to\infty}\int_E f_n\,dm\,\leq\,\limsup_{n\to\infty}\int_E f_n\,dm\,.$$

Combining the above 3 inequalities gives

$$\int_E f \, dm = \liminf_{n \to \infty} \int_E f_n \, dm = \limsup_{n \to \infty} \int_E f_n \, dm \, ,$$

so the sequence $\int_E f_n dm$ converges to $\int_E f dm$, as required.

(d) The Dominated Convergence Theorem asserts the following: Suppose E ⊂ R is measurable. Let {f_n}[∞]_{n=1} be a sequence of measurable functions (defined on E) such that |f_n(x)| ≤ g(x) for all n ≥ 1 and almost every x ∈ E, for some function g which is integrable over E. If f = lim_{n→∞} f_n almost everywhere then f is integrable over E, and

$$\lim_{n\to\infty}\int_E f_n dm = \int_E f dm$$

(e) For each $n \ge 1$ and $x \in [1, \infty)$ we have

$$|f_n(x)| = f_n(x) = \frac{\sqrt{x}}{1 + nx^4} \le \frac{\sqrt{x}}{nx^4} \le x^{-7/2} =: g(x).$$

Since g is integrable on $[1,\infty)$, and $f_n \to 0$ pointwise, the Dominated Convergence Theorem gives

$$\lim_{n\to\infty}\int_1^\infty f_n\,dm=\int_1^\infty 0\,dm=0\,.$$

© Queen Mary, University of London 2009

END OF EXAMINATION