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Question 1  (a) (Lebesgue) outer measure m*(A) is defined as

m*(A) = glg Y (1),
nJp=1

the infimum being taken over all sequences {I,,} of intervals satisfying A C
U,—1 I, and where /(1) denotes the length of an interval .

(b) A CRisanull setif m*(A) =0, i.e. if for every € > 0 we can find a sequence
{I,} of intervals satisfying A C |, I, and Y., I(I,) < €.

(c) If A is countable, with distinct elements xi,x»,... (the list can be finite or
infinite), then we can write it as A = J,_, I,, where either /, is the closed
interval [x,,x,] or the empty set (I, = (5,5), say). Now [/(I,,) = 0 for each n,
so Y~ 1(I,) =0, and clearly A C | J;_ I, so A is null.

(d) One example is the middle-third Cantor set. This is the set A = (,,_; An,
where Ag = [0,1], and in general A, denotes the disjoint union of 2!
closed intervals obtained by removing the (open) ‘middle third’ from each of
the 2" disjoint closed intervals whose union is A,,.

(e) If A C B then any sequence of intervals {/, } satisfying B C |J,_, I, also satis-
fies A C U, _ I. So the infimum in the definition of m*(A) is over a larger col-
lection of sequences of intervals than the infimum in the definition of m*(B),
hence m*(A) < m*(B).

(f) If the right-hand side is infinite then the inequality clearly holds; so suppose
Yoo m*(Ay) < oo

For any € > 0 and n > 1 there is a sequence of intervals {I}};” , covering A,

such that
€

LU0 < () + 55

So the countable collection of intervals {I}! }x ,>1 covers J,;_; A, thus

n=1 n=1k=1
and also
Y YUY (man)+5;) = X m(an) +e
n=1k=1 n=1 n=1
So

and letting € — 0 completes the proof.
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Question 2 (a) E is (Lebesgue-) measurable if
m*(A) =m"(ANE)+m"(ANE")
for all subsets A C R.
(b) Now (E€)“ =E,soif ACRand m"(A) =m*(ANE)+m*(ANE®), then

m* (ANE)+m" (AN(E)") =m"(ANE®)+m* (ANE) =m*(A).
(c) Countable additivity means that if the measurable sets By, B», ... are pairwise
disjoint then m(U;_; By) = Y m(By).
(d) Let By = Ay, and B; = A; \ A;_; for i > 1. Then each B; is measurable, and
Ui=; Bi = Ui= Aj, so countable additivity gives
n n
m(| JAi)=m(|Bi)=) m(B;)= lim Y m(B;) = lim m(| | B;) = lim m(A,),
i=1

. n—oo n—oo
i=1 i=1 i=1

i=1
since A, = U Bi.

(e) The sequence {A \A,};_, is increasing, so (d) gives

m (U A \An) = lim m(A; \A,).
n:1 n—oo
But m(A;) < oo, so m(A; \Ay) =m(Ay) —m(A,), thus
m (U A \An> =m(A;) — lim m(A,).
n=1 e
Now U= A1 \An = A1 \ ;=1 An, SO

m (Um \A,,) =m(A\ [ An) =m(A)) —m([) An)
n=1 n=1

(using that m(A) < oo again).
Combining the previous two displayed equations gives
m(Ay) — lim m(A,) =m(Ay) —m( ﬂ Ay,

n—oo
n=1

hence m (N;,_; A,) = lim,_.m(A,) as required.

(f) We might choose A, = [n,0). Now m(A,) = oo for each n, so

[}

r}ggom(An) =o0 £ 0=m(0) =m([)An).
n=1
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Question3 (a) f: R — R is (Lebesgue-) measurable if for every interval I, the
set f~1(I) is measurable. [There are various well-known equivalent defini-
tions - any of these will also score full marks]

(b) A (non-negative) function ¢ : R — R is simple if it is measurable and only
takes finitely many values, i.e. if ¢(R) = {ay,...,a,} forsome ay,...,a, € R.

(c) If o= Z?:l aiXA; then
/ odm= Zaim(A,-ﬂE).
E i=1

(d)
/Efdm:szp/E(pdm,

where the supremum is taken over those simple functions ¢ satisfying 0 <
@(x) < f(x) forallx € E.

(e) If ¢ is a simple function satisfying 0 < ¢(x) < f(x) for all x € E, then also
0 < @(x) < g(x) forall x € E. So the supremum in the definition of [, gdm is
taken over a larger collection of simple functions than the one in the definition
of [p fdm, hence [, fdm < [pgdm.

(f) [4 marks] If f =0 almost everywhere, and 0 < ¢ < f is simple, then ¢ =0 al-
most everywhere, since neither f nor ¢ take negative values. Thus [p ¢ dm =
0 for all such ¢, and hence [, fdm = 0.

[5 marks] Conversely, if [p fdm =0 then set E := {x € R: f(x) > 0}; we
wish to show that m(E) = 0. For each n > 1 define

sothat E =, Ej.
Now ¢, := % XE, 1s simple, and @, < f by definition of E,, so

m(E,) = n/ Qo dm < n/fdsz,
R R

hence m(E) = m(U;—; En) < Y,y m(E,) = 0, as required.

(© Queen Mary, University of London 2009 MTH716U



Question 4 (a) Fatou’s Lemma states that if {f,} is a sequence of non-negative
measurable functions (defined on a measurable set E), then

limin | fudm > / (liminf f,)dm
N—soo

n—o0 E

(b) The Monotone Convergence Theorem asserts that if {f,} is a sequence of
non-negative measurable functions (defined on a measurable set E), and the
sequence { f,,(x)}>>_, increases monotonically to f(x) for each x € E, then

lim fndm = /fdm.
E

n—oo

(c) Now f,, < f,s0 [ fudm < [ fdm, hence

lim sup fndm</fdm

n—oo

Fatou’s Lemma gives
/ fdm < liminf | f,dm,
E n—e JE
and clearly also

liminf fndm < limsup [ f,dm.
E

n—oo N—so0

Combining the above 3 inequalities gives

/fdmzliminf/ Jodm =limsup | f,dm,
E n—e JE E

n—oo

so the sequence [ f, dm converges to [ fdm, as required.

(d) The Dominated Convergence Theorem asserts the following: Suppose E C R
is measurable. Let {f,}>_; be a sequence of measurable functions (defined
on E) such that |f,(x)| § g(x) for all n > 1 and almost every x € E, for some
function g which is integrable over E. If f = lim,_, f,, almost everywhere
then f is integrable over E, and

lim fndm = /fdm.
E

n—oo

(e) Foreachn > 1 and x € [1,0) we have

J%

=) = < Y

Since g is integrable on [1,0), and f,, — 0 pointwise, the Dominated Conver-
gence Theorem gives

S <x P g(x).

lim f,,dm / 0dm =0.
1

n—oo
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