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Solutions 1

1 First note that m∗(B) ≤ m∗(A∪B), by monotonicity (Proposition 2.3), because B ⊂
A∪B. Now m∗(A∪B) ≤ m∗(A)+ m∗(B) by sub-addditivity (Theorem 2.5), so in fact
m∗(B)≤m∗(A∪B)≤m∗(A)+m∗(B). But m∗(A)+m∗(B) = m∗(B) because m∗(A) = 0,
so overall we have m∗(B)≤ m∗(A∪B)≤ m∗(A)+m∗(B) = m∗(B). Since lefthand and
righthand sides of this inequality are identical, it follows that we must have equality
throughout, i.e. m∗(B) = m∗(A∪B) = m∗(A)+m∗(B) = m∗(B), as required.

2 Note that A⊂B∪(A∆B) (as is easily checked), so m∗(A)≤m∗(B∪(A∆B))≤m∗(B)+
m∗(A∆B) = m∗(B), by monotonicity (Proposition 2.3), sub-additivity (Theorem 2.5),
and the fact that m∗(A∆B) = 0.

Now we can reverse the roles of A and B, noting that B⊂ A∪ (A∆B) and therefore
m∗(B)≤ m∗(A∪ (A∆B))≤ m∗(A)+m∗(A∆B) = m∗(A).

Combining these two inequalities gives m∗(A) = m∗(B), as required.

3 If a system {In}∞
n=1 of intervals covers A, then the translated intervals {In + t}∞

n=1
clearly cover A + t, and the total lengths of the systems are equal, i.e. ∑

∞
n=1 l(In) =

∑
∞
n=1 l(In + t), because l(In) = l(In + t) for each n.

Conversely, if the system {Jn}∞
n=1 of intervals covers A+ t, then the translated inter-

vals {Jn−t}∞
n=1 cover A, and the total lengths of the systems are equal, i.e. ∑

∞
n=1 l(Jn) =

∑
∞
n=1 l(Jn− t), because l(Jn) = l(Jn− t) for each n.

So we have a one-to-one correspondence between coverings (by intervals) of A and
A + t, and this correspondence preserves the total length of the covering. It follows
that the sets ZA and ZA+t are identical, hence m∗(A) = infZA = infZA+t = m∗(A + t),
as required.

4 There are many possible answers to this question. One collection consists of R itself,
together with every countable subset of R.

5 First suppose x and y belong to exactly the same subsets in F . In other words, if
A ∈F then x ∈ A if and only if y ∈ A. So δx(A) = δy(A) for every A ∈F . Therefore
δx = δy.

Conversely, suppose that δx = δy. This means that δx(A) = δy(A) for every A ∈F .
But this means that x and y belong to exactly the same subsets in F .

6 Without loss of generality we may suppose that f is monotone increasing. If f is
increasing then for each a ∈ R, the set f−1([a,∞)) is either empty (if a > f (x) for all
x ∈ R), or the interval [b,∞) or (b,∞) for some b(= inf{x ∈ R : f (x)≥ a}). These are
all measurable sets, so f is measurable.



7 Since f is measurable, f−1(I) is a measurable set for any choice of interval I. In
particular, we may choose I = [c,c] = {c}, and see that {x : f (x) = c} = f−1({c}) =
f−1([c,c]) is measurable for every c ∈ R, as required.

8 Given f : R→R, show that the condition “{x : f (x) = c} is measurable for all c∈R”
is NOT enough to guarantee that f is measurable.

Let A be a non-measurable set contained in (0,1) (for example the set described
in the Appendix of Capinski & Kopp). Define f : R→ R by f (x) = x for x ∈ A, and
f (x) =−x for x ∈ [0,1]\A, and f (x) = 5 for x ∈ (−∞,0)∪ (1,∞).

If c ∈ A then {x : f (x) = c} = {c}, and the singleton {c} is a measurable set. If
c ∈ [−1,0]\−A then {x : f (x) = c}= {−c}, again a measurable set. Now if c = 5 then
{x : f (x) = c} = (−∞,0)∪ (1,∞), again a measurable set. For any other c we have
{x : f (x) = c}= /0, again a measurable set.

So {x : f (x) = c} is a measurable set for every c ∈ R.
However, f−1(0,1) = A, a non-measurable set, so f is a non-measurable function.

9 Give an example of a non-measurable function f such that f 2 is measurable (where
we define f 2 by f 2(x) = f (x)2).

Let A be a non-measurable set. Define the function f by f (x) = 1 if x ∈ A and
f (x) = −1 if x /∈ A. Then f−1[1,1] = f−1(1) = A is non-measurable, so f is non-
measurable. But f 2 is the constant function identically equal to 1, hence measurable.

10 Suppose f : R→ R is differentiable. Show that its derivative f ′ is a measurable
function.

By definition of derivative, f ′(x) = limδ→0
f (x+δ )− f (x)

δ
. In particular,

f ′(x) = lim
n→∞

f (x+1/n)− f (x)
1/n

= lim
n→∞

fn(x) ,

where we define the sequence of functions { fn}∞
n=1 by fn(x) = n( f (x+1/n)− f (x)).

Each fn is a measurable function (since for each n, the function x 7→ f (x + 1/n) is
easily seen to be measurable), so by Theorem 3.5, f ′ = limn→∞ fn is measurable.


