University of London
MTH716U / MTHM007
Measure Theory \& Probability

Solutions 1

1 First note that $m^{*}(B) \leq m^{*}(A \cup B)$, by monotonicity (Proposition 2.3), because $B \subset$ $A \cup B$. Now $m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$ by sub-addditivity (Theorem 2.5), so in fact $m^{*}(B) \leq m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$. But $m^{*}(A)+m^{*}(B)=m^{*}(B)$ because $m^{*}(A)=0$, so overall we have $m^{*}(B) \leq m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)=m^{*}(B)$. Since lefthand and righthand sides of this inequality are identical, it follows that we must have equality throughout, i.e. $m^{*}(B)=m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)=m^{*}(B)$, as required.

2 Note that $A \subset B \cup(A \Delta B)$ (as is easily checked), so $m^{*}(A) \leq m^{*}(B \cup(A \Delta B)) \leq m^{*}(B)+$ $m^{*}(A \Delta B)=m^{*}(B)$, by monotonicity (Proposition 2.3), sub-additivity (Theorem 2.5), and the fact that $m^{*}(A \Delta B)=0$.

Now we can reverse the roles of A and B, noting that $B \subset A \cup(A \Delta B)$ and therefore $m^{*}(B) \leq m^{*}(A \cup(A \Delta B)) \leq m^{*}(A)+m^{*}(A \Delta B)=m^{*}(A)$.

Combining these two inequalities gives $m^{*}(A)=m^{*}(B)$, as required.
3 If a system $\left\{I_{n}\right\}_{n=1}^{\infty}$ of intervals covers A, then the translated intervals $\left\{I_{n}+t\right\}_{n=1}^{\infty}$ clearly cover $A+t$, and the total lengths of the systems are equal, i.e. $\sum_{n=1}^{\infty} l\left(I_{n}\right)=$ $\sum_{n=1}^{\infty} l\left(I_{n}+t\right)$, because $l\left(I_{n}\right)=l\left(I_{n}+t\right)$ for each n.

Conversely, if the system $\left\{J_{n}\right\}_{n=1}^{\infty}$ of intervals covers $A+t$, then the translated intervals $\left\{J_{n}-t\right\}_{n=1}^{\infty}$ cover A, and the total lengths of the systems are equal, i.e. $\sum_{n=1}^{\infty} l\left(J_{n}\right)=$ $\sum_{n=1}^{\infty} l\left(J_{n}-t\right)$, because $l\left(J_{n}\right)=l\left(J_{n}-t\right)$ for each n.

So we have a one-to-one correspondence between coverings (by intervals) of A and $A+t$, and this correspondence preserves the total length of the covering. It follows that the sets Z_{A} and Z_{A+t} are identical, hence $m^{*}(A)=\inf Z_{A}=\inf Z_{A+t}=m^{*}(A+t)$, as required.

4 There are many possible answers to this question. One collection consists of \mathbb{R} itself, together with every countable subset of \mathbb{R}.

5 First suppose x and y belong to exactly the same subsets in \mathscr{F}. In other words, if $A \in \mathscr{F}$ then $x \in A$ if and only if $y \in A$. So $\delta_{x}(A)=\delta_{y}(A)$ for every $A \in \mathscr{F}$. Therefore $\delta_{x}=\delta_{y}$.

Conversely, suppose that $\delta_{x}=\delta_{y}$. This means that $\delta_{x}(A)=\delta_{y}(A)$ for every $A \in \mathscr{F}$. But this means that x and y belong to exactly the same subsets in \mathscr{F}.

6 Without loss of generality we may suppose that f is monotone increasing. If f is increasing then for each $a \in \mathbb{R}$, the set $f^{-1}([a, \infty)$) is either empty (if $a>f(x)$ for all $x \in \mathbb{R})$, or the interval $[b, \infty)$ or (b, ∞) for some $b(=\inf \{x \in \mathbb{R}: f(x) \geq a\})$. These are all measurable sets, so f is measurable.

7 Since f is measurable, $f^{-1}(I)$ is a measurable set for any choice of interval I. In particular, we may choose $I=[c, c]=\{c\}$, and see that $\{x: f(x)=c\}=f^{-1}(\{c\})=$ $f^{-1}([c, c])$ is measurable for every $c \in \mathbb{R}$, as required.

8 Given $f: \mathbb{R} \rightarrow \mathbb{R}$, show that the condition " $\{x: f(x)=c\}$ is measurable for all $c \in \mathbb{R}$ " is NOT enough to guarantee that f is measurable.

Let A be a non-measurable set contained in $(0,1)$ (for example the set described in the Appendix of Capinski \& Kopp). Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x$ for $x \in A$, and $f(x)=-x$ for $x \in[0,1] \backslash A$, and $f(x)=5$ for $x \in(-\infty, 0) \cup(1, \infty)$.

If $c \in A$ then $\{x: f(x)=c\}=\{c\}$, and the singleton $\{c\}$ is a measurable set. If $c \in[-1,0] \backslash-A$ then $\{x: f(x)=c\}=\{-c\}$, again a measurable set. Now if $c=5$ then $\{x: f(x)=c\}=(-\infty, 0) \cup(1, \infty)$, again a measurable set. For any other c we have $\{x: f(x)=c\}=\emptyset$, again a measurable set.

So $\{x: f(x)=c\}$ is a measurable set for every $c \in \mathbb{R}$.
However, $f^{-1}(0,1)=A$, a non-measurable set, so f is a non-measurable function.
9 Give an example of a non-measurable function f such that f^{2} is measurable (where we define f^{2} by $\left.f^{2}(x)=f(x)^{2}\right)$.

Let A be a non-measurable set. Define the function f by $f(x)=1$ if $x \in A$ and $f(x)=-1$ if $x \notin A$. Then $f^{-1}[1,1]=f^{-1}(1)=A$ is non-measurable, so f is nonmeasurable. But f^{2} is the constant function identically equal to 1 , hence measurable.

10 Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Show that its derivative f^{\prime} is a measurable function.

By definition of derivative, $f^{\prime}(x)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta}$. In particular,

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} \frac{f(x+1 / n)-f(x)}{1 / n}=\lim _{n \rightarrow \infty} f_{n}(x)
$$

where we define the sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ by $f_{n}(x)=n(f(x+1 / n)-f(x))$. Each f_{n} is a measurable function (since for each n, the function $x \mapsto f(x+1 / n)$ is easily seen to be measurable), so by Theorem 3.5, $f^{\prime}=\lim _{n \rightarrow \infty} f_{n}$ is measurable.

