

MTH716U / MTHM007

Measure Theory & Probability

Problems 1

November 2011

1 Prove that if $m^*(A) = 0$ then $m^*(A \cup B) = m^*(B)$ for all B.

2 Prove that if $m^*(A \Delta B) = 0$ then $m^*(A) = m^*(B)$.

3 Prove that outer measure is translation-invariant, i.e. that $m^*(A) = m^*(A+t)$ for every A and t, where $A+t := \{a+t : a \in A\}$.

4 Find an infinite collection of subsets of \mathbb{R} which contains \mathbb{R} , is closed under countable unions, and is closed under countable intersections, but is not a σ -field.

5 Let Ω be a set, and \mathscr{F} a σ -field on Ω . If $x, y \in \Omega$, show that the (Dirac delta) measures δ_x and δ_y (defined on \mathscr{F}) are equal if and only if x and y belong to exactly the same subsets in \mathscr{F} .

6 Prove that every monotone function is measurable.

7 *Prove that if* $f : \mathbb{R} \to \mathbb{R}$ *is a measurable function, then the set* $\{x : f(x) = c\}$ *is measurable for every* $c \in \mathbb{R}$.

8 Given $f : \mathbb{R} \to \mathbb{R}$, show that the condition " $\{x : f(x) = c\}$ is measurable for all $c \in \mathbb{R}$ " is NOT enough to guarantee that f is measurable.

9 Give an example of a non-measurable function f such that f^2 is measurable (where we define f^2 by $f^2(x) = f(x)^2$).

10 Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable. Show that its derivative f' is a measurable function.