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Abstract. The computation of wave-energy distributions in the mid-to-high

frequency regime can be reduced to ray-tracing calculations. Solving the ray-

tracing problem in terms of an operator equation for the energy density leads to

an inhomogeneous equation which involves a Perron-Frobenius operator defined on

a suitable Sobolev space. Even for fairly simple geometries, let alone realistic

scenarios such as typical boundary value problems in room acoustics or for mechanical

vibrations, numerical approximations are necessary. Here we study the convergence

of approximation schemes by rigorous methods. For circular billiards we prove that

convergence of finite-rank approximations using a Fourier basis follows a power law

where the power depends on the smoothness of the source distribution driving the

system. The relevance of our studies for more general geometries is illustrated by

numerical examples.
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1. Introduction

Ray-tracing methods serve as an important toolkit in finding approximate solutions

of linear wave equations in the high frequency limit. This approximation is used in

a variety of fields providing, for example, the connection between Maxwell’s equations

and geometric optics, as well as between quantum mechanics and classical Hamiltonian

mechanics [16]. The ray-tracing limit has also been considered in detail in acoustics,

seismology and mechanical vibrations [27]. In engineering applications, ray tracing

is employed in handling electromagnetic problems, such as coverage estimates for 5G

or WiFi communication [14], room acoustics simulations [26] as well as structure-borne

sound propagation in mechanical structures [8]. Finding closed form, analytical solutions

to such engineering problems of sufficient complexity is generally impossible, even using

ray-tracing techniques, and one has to use numerical methods instead.

For solving linear wave problems such as those listed above, the numerical methods

used have to be adapted to the relevant length and frequency scales involved. In the low

frequency regime, finite element methods (FEM) are routinely employed for resolving the

full wave dynamics. However, the number of degrees of freedom in an FEM model needs

to scale with the wavelength and there is thus an upper limit in frequency above which

the required computational resources become unfeasible. At very high frequencies, power

balance approaches can often be used as long as certain assumptions on the ergodicity of

the underlying ray dynamics are satisfied [28]. In the mid-to-high frequency range, ray-

tracing becomes the method of choice; standard ray-tracing techniques track all possible

rays from a source to a receiver point [26] — a method which becomes cumbersome if

many reflections need to be taken into account. As an alternative Dynamical Energy

Analysis (DEA) was proposed and has proven to be useful in particular for structure-

borne sound problems [28, 17]. Instead of tracking individual rays carrying vibrations

across the complex structure — which is extremely challenging — in DEA, the problem

is reformulated in terms of densities of rays, which are then mapped across a mesh

representing the structure [9, 10]. This reduces the ray tracing problem from tracking

rays on complicated and curved domains to mapping ray segments across small, plane

patches of a simple shape forming the mesh, typically triangular or quadrilateral mesh

cells. The ray densities are then mapped from one cell of the mesh to adjacent ones and

the overall transport problem can be formulated in terms of an inhomogeneous equation

of the form

(I − L)f = f0 , (1)

where f0 is the initial ray density, L a Perron-Frobenius type operator describing

the evolution of ray densities and f the required final ray density. Using DEA, the

distribution of vibrational energy in mechanical structures, such as ships, cars and

tractors [18, 17] can be calculated successfully.

For such realistic geometries, Equation (1) above cannot be solved analytically,

so recourse is made to numerical schemes based on heuristic finite-dimensional matrix

approximations of the operator L. To date, very little is known about the convergence
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properties of these schemes and the dependence of the convergence rate on the ray

dynamics, as well as the discretisation techniques [10]. The precise form of convergence

is likely to be highly sensitive to both the basis functions used in approximating the

inhomogeneous Equation (1), as well as dynamical and damping properties of the

system under investigation [18]. For our study, we will therefore be concerned with

the approximation of L by operators of finite rank. There is a plethora of papers on

numerical approximation of Perron-Frobenius operators, starting with Ulam’s method of

phase space discretisation, finite section or Galerkin methods, and data-driven methods,

see for example [2, 12, 13, 20, 22] to mention but a few. Surprisingly, the application of

DEA (which falls into the Galerkin category) to even fairly simple geometries has not

been dealt with at a rigorous level. Here, we shall thus focus on one of the simplest

cases, the billiard dynamics given by the ballistic motion within a circular disk. We shall

establish rigorous error bounds of finite-dimensional approximations for the resulting

energy distribution.

In order to set up the required notation, consider a particle moving inside a circular

billiard table D being specularly reflected at its boundary ∂D. We parametrise ∂D by

the polar angle x ∈ R/2πZ and we denote by y ∈ [−π/2, π/2] the angle of reflection

that the postcollisional velocity vector has with the inward normal to ∂D. Initially

the collision angle is defined on an interval. It is, however, technically simpler to deal

with cyclic variables. Since both angles −π/2 and π/2 correspond to a particle which

sticks on the boundary we identify both angles so that the collision angle becomes a

cyclic variable as well. With these conventions, the collision map T on the domain

Ω = (R/2πZ)× (R/πZ) can be written as

T (x, y) = (x+ π − 2y, y), (x, y) ∈ Ω (2)

with its inverse φ = T−1 given by

φ(x, y) = (x− π + 2y, y) (x, y) ∈ Ω . (3)

It is not difficult to see that the collision map T preserves the normalised Lebesgue

measure on Ω. The long-term statistical behaviour of T can thus be studied by

investigating the associated Perron-Frobenius operator (see, for example, [7]), which

for invertible measure-preserving maps is given by the composition operator Cφ defined

as

(Cφf)(x, y) = f(φ(x, y)), (x, y) ∈ Ω , (4)

where f : Ω→ C. In the current work we are interested in the properties of a weighted

Perron-Frobenius operator, also known as a transfer operator. In order to define it, let

us first introduce a multiplication operator Mw acting on functions f : Ω→ C by

(Mwf)(x, y) = w(x, y)f(x, y), (x, y) ∈ Ω, (5)

where w : Ω → [0,∞) is a suitable weight function, which in the DEA framework

accounts for dissipation caused either by collisions with the wall or by in-flight



Transfer operator approach to ray-tracing in circular domains 4

dissipation. The transfer operator, understood to be acting on a suitable space of

functions detailed in the following section, is now given by

L =MwCφ . (6)

In the present article, we are interested in approximations of the solution to the operator

Equation (1) with f0 : Ω→ [0,∞) interpreted as the initial boundary density of particles

induced by the first boundary collision of particles emitted by a source located in the

interior of D (see [28]). In the DEA approach this quantity represents the energy source.

The resulting energy distribution is captured by the solution, f : Ω→ [0,∞), which gives

the stationary boundary density generated by the collision dynamics. Given a suitable

Banach space and a sequence of finite-rank projections (PK)K∈N, an approximation

method for (1) can be constructed by considering the projected finite-dimensional

problem

(I − PKLPK)fK = f0 . (7)

The aim of this work is to present a Banach space for f0 and (PK)K∈N, so that

problem (7) has solutions, which converge in a suitable topology to the solution of (1)

as K tends to infinity, with the speed of convergence being of the order K−α. The

exponent α depends on the smoothness of f0 and the requirements imposed on the type

of convergence.

In passing we note that transfer operators have their roots in statistical mechanics

[23, 24] and nowadays play an important role in the ergodic theory of smooth expanding,

or more generally, hyperbolic dynamical systems (see, for example, [3, 4]). The main

reason for their popularity in this context derives from the fact that for expanding

or hyperbolic dynamical systems the transfer operator, when considered on a suitable

function space, can be shown to have discrete peripheral spectrum, from which long-

term statistical properties of the underlying system can be derived. In the elliptic

setting, however, such as for the circular billiard considered in this article, analogous

results cannot be expected, and, as a consequence, transfer operator methods have

received little attention in this context. It is perhaps worth noting that in our setting

we do not require discreteness of the peripheral spectrum of the transfer operator. The

main onus is to show that the resolvent of the transfer operator exists at the point 1

(see Equation (1)) and can be effectively approximated by finite-rank operators (see

Equation (7)).

As we intend to keep our presentation accessible to non-specialists, we will

occasionally elaborate on aspects covered in the specialised literature but which may

not be well known to a general audience. The remaining parts are organised as follows.

In Section 2 we introduce Sobolev spaces, on which the transfer operator and its finite-

dimensional approximations are bounded operators with spectral radii bounded away

from 1. In Section 3 we shall prove the convergence results for the operator equations (1)

and (7) stated as Theorem 3.4. In the final Section 4 we summarise the main findings,

compare the formal results with numerical simulations and explore the relevance of the

current study in a wider context.
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2. Sobolev spaces and transfer operators

We will be interested in certain subspaces of L2(Ω) = L2(Ω,m) where dm = dxdy/(2π2)

is the normalised two-dimensional Lebesgue measure on Ω. The natural inner product

is given by

(f, g)L2 =

∫
Ω

f(x, y)g(x, y)dm.

An orthonormal basis of L2(Ω) is given by {ek : k ∈ Z2} where ek(x, y) = eik1xe2ik2y so

that f(x, y) =
∑

k∈Z2 ck(f)ek(x, y) with Fourier coefficients ck(f) = (f, ek)L2 .

Definition 2.1. Let m = (m1,m2) ∈ N2
0. The Sobolev space Hm(Ω) is the collection

of all f ∈ L2(Ω) such that for all ν = (ν1, ν2) ∈ N2 with ν1 ≤ m1 and ν2 ≤ m2 the weak

derivatives Dνf = Dν1
x D

ν2
y f exist and belong to L2(Ω).

The space Hm(Ω) is a Hilbert space, when equipped with the inner product‡

(f, g)Hm = (f, g)L2 + (Dm1
x f,Dm1

x g)L2 + (Dm2
y f,Dm2

y g)L2 . (8)

One can rewrite this definition in terms of Fourier coefficients. Using the fact that

ck(D
νf) = (ik1)ν1(2ik2)ν2ck(f), Equation (8) can be expressed as

(f, g)Hm =
∑
k∈Z2

(1 + |k1|2m1 + |2k2|2m2)ck(f)ck(g) . (9)

Remark 2.2. For m = (m1,m2) with m1 = m2 the Sobolev space Hm(Ω) coincides

with the classical isotropic Sobolev space, while for m1 6= m2, the space is an example

of an anisotropic Sobolev space (see, for example, [11, Sec. 2.2]).

Using Equation (9) we can define fractional Sobolev spaces Hs(Ω) for s = (s1, s2) ∈
R2

+ as

Hs(Ω) =

{
f ∈ L2(Ω) :

∑
k∈Z2

|ck(f)|2(1 + |k1|2s1 + |2k2|2s2) <∞
}
,

which are Hilbert spaces when equipped with the inner product given in Equation (9)

with m replaced by s.

We shall next investigate the properties of the composition operator Cφ associated

with the map φ in (3) on the fractional Sobolev space Hs(Ω).

Lemma 2.3. The composition operator Cφ given in (4) considered on Hs(Ω) with

s1 ≥ s2 ≥ 0 is bounded, with spectral radius r(Cφ) = 1.

Proof. For any n ∈ N and (x, y) ∈ Ω we have φn(x, y) = (x− nπ + 2ny, y), and thus

(Cnφek)(x, y) = (Cφnek)(x, y) = (−1)k1nek1,nk1+k2(x, y), (10)

for any k ∈ Z2.

‡ This choice of inner product is sometimes referred to as the modified inner product, in contrast with

the classical one (see, for example, [21, Def 2.2]).
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In order to show that the operator is bounded we will need the following general

inequality. Let (x, y) ∈ [0,∞)2 and t ≥ 0, then

(x+ y)t ≤ Ct(x
t + yt), with Ct = max(1, 2t−1). (11)

Using Equation (11) we obtain the bound |nk1 + k2|2s2 ≤ C2s2(n
2s2|k1|2s1 + |k2|2s2)

for s1 ≥ s2, which leads to

‖Cnφek‖2
Hs = 1 + |k1|2s1 + |2(nk1 + k2)|2s2 ≤

(
1 + C2s2(2n)2s2

)
‖ek‖2

Hs .

Since (Cnφek, Cnφel)Hs = 0 for k 6= l, the operator norm of Cnφ is bounded from above by

(1 + (2n)2s2 max(1, 22s2−1))
1/2

, resulting in the upper bound for the spectral radius

r(Cφ) = lim
n→∞

‖Cnφ‖1/n ≤ lim
n→∞

(
1 + (2n)2s2 max(1, 22s2−1)

)1/(2n)
= 1 .

In order to see that the inequality above is an equality, observe that the operator norm

of Cnφ is bounded from below by 1 as ‖Cnφe0‖Hs = ‖e0‖H2 . Thus r(Cφ) = 1.

Before proceeding we note that by (10), the action of the composition operator on

Hs(Ω) can be represented by the action of the matrix

A =

(
1 0

1 1

)

on Fourier coefficients. In particular, we have

Cnφek = (−1)k1neAnk. (12)

For K ∈ N define ΛK = Λ0
K = {(k1, k2) ∈ Z2 : |k1| < K, |k2| < K}, and

let Λn
K = An(ΛK). Then for any n ∈ N0 we can define a finite-rank operator

PΛn
K

: Hs(Ω)→ Hs(Ω) by

(PΛn
K
f)(x, y) =

∑
k∈Λn

K

ck(f)ek(x, y), (x, y) ∈ Ω . (13)

Lemma 2.4. Let Cφ and PΛK
be as above. Then

CnφPΛK
= PΛn

K
Cnφ

for any n,K ∈ N0.

Proof. This follows by checking the equality for any basis element ek and noting that

An is invertible.

Definition 2.5. LetMw denote the multiplication operator as defined in Equation (5),

considered as an operator on Hs(Ω), with a smooth weight function w : Ω→ [0,∞). In

addition, we assume that w has the following properties:
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(a) ‖w‖∞ = supx∈Ω |w(x)| < 1;

(b) w is bounded away from zero;

(c) w(x, y) = w(x′, y) for any (x, y), (x′, y) ∈ Ω, that is, the weight w does not depend

on the first argument.

Remark 2.6. The operator Mw models the effect of damping on the motion of the

billiard particle. Assumptions (a) and (b) imply that the damping is well-behaved,

while assumption (c) is innocuous, given the circular symmetry of the billiard table.

The following two lemmas summarise basic properties of Mw and Cφ.

Lemma 2.7. Let Mw, Cφ and PΛK
be as above. Then we have the following.

(i) MwCφ = CφMw;

(ii) DxCφ = CφDx;

(iii) DxMw =MwDx;

(iv) DyCnφ = 2nCnφDx + CnφDy for n ∈ N;

(v) DyMn
w = nMn−1

w MDyw +Mn
wDy for n ∈ N;

(vi) DxPΛK
= PΛK

Dx and DyPΛK
= PΛK

Dy for K ∈ N.

Proof. Items (i) and (iii) follow from Definition 2.5(c); items (ii) and (iv) follow by

direct computation using the map φ; item (v) is obvious and (vi) is a direct consequence

of the relations ck(Dxf) = (ik1)ck(f) and ck(Dyf) = (2ik2)ck(f).

We write LK = PΛK
MwCφPΛK

for the finite-rank approximation of L = MwCφ.

Using Lemma 2.7 (i) and Lemma 2.4, we can write LnK for n ∈ N as

LnK = (PΛK
MwCφPΛK

)n = PΛK

(
n∏
l=1

MwPΛl
K

)
Cnφ . (14)

In order to state the properties of L and LK we need to introduce the following

multi-index notation: an n-dimensional multi-index is an n-tuple in = (i1, i2, . . . , in) of

non-negative integers of order |in| = i1+i2+· · ·+in = m; the corresponding multinomial

coefficient is given by (
m

in

)
=

m!

i1!i2! · · · in!
.

Lemma 2.8. Let Mw, Cφ and PΛl
K

be as above. Then we have the following.

(i) Dm
y Cφ =

∑m
i=0 2m−i

(
m
i

)
CφDm−i

x Di
y;

(ii) Dm
y Cnφ =

∑
|in+1|=m 2m−in+1

(
m

in+1

)
CnφDm−in+1

x Din+1
y ;

(iii) Dm
y

(∏n
l=1MwPΛl

K

)
=
∑
|in+1|=m

(
m

in+1

) (∏n
l=1MD

il
y w
PΛl

K

)
Din+1
y .

Proof. Item (i) follows by induction over m using Lemma 2.7(iv) for the base case

m = 1. For item (ii), the additional induction over n follows by rewriting (i)

as Dm
y Cφ =

∑
i1+i2=m 2i1

(
m
i1,i2

)
CφDi1

x D
i2
y . Finally, item (iii) follows from the Leibniz

formula.
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We are now ready to prove the main result of this section. Keeping in mind that

we assume that the billiard dynamics is dissipative, that is, the weight is chosen so that

‖w‖∞ < 1, the following lemma shows that, given f0 ∈ Hs(Ω), the problem (1) and the

projected version (7) have unique solutions f ∈ Hs(Ω) and fK ∈ Hs(Ω), respectively.

Lemma 2.9. Consider L and LK, K ∈ N, as operators on Hs(Ω) for s ∈ N2
0 with

s1 ≥ s2 ≥ 0. Then

(i) (LK)K∈N is a family of bounded operators Hs(Ω) with norms bounded uniformly

in K. Moreover, r(LK) ≤ ‖w‖∞ for all K;

(ii) L is a bounded operator on Hs(Ω) with r(L) ≤ ‖w‖∞.

Proof. We shall only prove statement (i), as the proof of statement (ii) follows by almost

identical arguments. In the following, we shall assume that s1 ≥ s2 ≥ 1, as the case

s1s2 = 0 follows by identical arguments. For f ∈ Hs(Ω) we have

‖LnKf‖2
Hs = ‖LnKf‖2

L2 + ||Ds1
x LnKf‖2

L2 + ‖Ds2
y LnKf‖2

L2 . (15)

Let p, q ∈ N with p ≤ s1 and q ≤ s2. It is not difficult to see that for any f ∈ Hs(Ω)

and K ∈ N0 the following holds.

(a) ‖PΛj
K
f‖L2 ≤ ‖f‖L2 for any j ∈ N0;

(b) ‖Mwf‖L2 ≤ ‖w‖∞‖f‖L2 ;

(c) ‖Dp
xf‖2

L2 ≤ ‖Ds1
x f‖2

L2 and ‖Dq
xf‖2

L2 ≤ ‖Ds2
x f‖2

L2 ;

(d) ‖Dp
xD

q
yf‖2

L2 ≤ ‖Dp+q
x f‖2

L2 + ‖Dp+q
y f‖2

L2 wherever p+ q ≤ s2.

Here, statements (c) and (d) follow by writing the L2 norm of Dp
xf and Dq

yf using

Parseval’s identity.

Writing LnK as in Equation (14) and using (a) and (b) above iteratively we have

‖LnKf‖L2 = ‖(PΛK
MwCφPΛK

)nf‖L2 ≤ ‖w‖n∞‖Cnφf‖L2 ≤ ‖w‖n∞‖f‖L2 , (16)

where the last inequality follows from the fact that the operator norm of Cφ on L2(Ω)

equals 1.

As Dx commutes with any of the operators involved (Lemma 2.7 (ii,iii,vi)) we have

in the second term on the right-hand side of (15) that Ds1
x LnK = LnKDs1

x . By the same

argument as above we have

‖Ds1
x LnKf‖L2 ≤ ‖w‖n∞‖Ds1

x f‖L2 . (17)

In order to bound the last term in Equation (15) we are using Lemma 2.8(iii) and

Hölder’s inequality in order to write

‖Ds2
y LnKf‖2

L2 = ‖
s2∑
j=0

AjD
j
yCnφf‖2

L2 ≤ (s2 + 1)

s2∑
j=0

‖Aj‖2
L2‖Dj

yCnφf‖2
L2 ,

where Aj =
∑
|in|=s2−j

(
s2
in,j

) (∏n
l=1 MD

il
y w
PΛl

K

)
.
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We shall first obtain a bound for ‖Dj
yCnφf‖L2 . Using Lemma 2.8(ii) and decomposing

the sum in terms of powers of Dx and Dy we obtain

Dj
yCnφ = (2n)jCn

φD
j
x + Cn

φD
j
y +

∑
|in+1|=j

0<in+1<j

2j−in+1

(
j

in+1

)
CnφDj−in+1

x Din+1
y ,

where we have used the multinomial formula
∑
|in|=k

(
k
in

)
= nk. Thus, for j ≤ m we

obtain using Hölder’s inequality, the multinomial formula and upper bounds for 2j−in+1

‖Dj
yCnφf‖2

L2 ≤ 2j(n+ 1)j
(
2jnj‖Dj

xf‖2
L2 + ‖Dj

yf‖2
L2

)
+ 2j(n+ 1)j

(
(2j(n+ 1)j − 2jnj − 1) max

0<i<j
‖Dj−i

x Di
yf‖2

L2

)
≤ 22s2(n+ 1)2s2

(
‖Ds1

x f‖2
L2 + ‖Ds2

y f‖2
L2

)
, (18)

where the last inequality uses (c) and (d).

Next we shall obtain a bound on the operator norm of Aj for j ≤ s2. First note

that MDl
yw

=MwM(Dl
yw)/w is well-defined as w is bounded away from zero. By using

(a) and (b) iteratively, for any in = (i1, . . . , in) with |in| = s2 we have

‖
n∏
l=1

M
D

il
y w
PΛl

K
f‖2

L2 ≤ Cs2‖w‖2n
∞‖f‖2

L2

where Cs2 = max i1,...,in
|in|=s2

(∏n
l=1 ‖Dil

yw/w‖2
∞
)
≤ max0≤l≤s2 ‖Dl

yw/w‖2s2∞ is a constant

independent of n. Using arguments analogous to those used to obtain inequality (18),

we obtain the bound

‖Aj‖2
L2 ≤ (n+ 1)2s2Cs2‖w‖2n

∞ . (19)

Using the estimates (16), (17), (18) and (19) in Equation (15) we arrive at the

bound

‖LnKf‖2
Hs ≤ C̃n,s2‖w‖2n

∞‖f‖2
H2

with C̃n,s2 ≤ (s2 + 1)s2(n + 1)4s222s2Cs2 + 1. As C̃n,s2 is independent of K, the family

(LK)K∈N is a uniformly bounded family of bounded operators on Hs(Ω). Finally, taking

the right hand side of Equation (15) to the power of 1/n and observing that C̃n,s2 grows

polynomially in n, the upper bound for the spectral radius of LK follows.

3. Convergence properties

In the previous section we established (see Lemma 2.9) that given f0 ∈ Hs(Ω), the

problem (1) and the projected version (7) have unique solutions f ∈ Hs(Ω) and

fK ∈ Hs(Ω), respectively. We shall now turn to establishing the convergence of fK
to f . This would be straightforward if we knew that LK → L as K → ∞ in the

operator norm on Hs(Ω), since then, using the so-called second resolvent identity

(I − LK)−1 − (I − L)−1 = (I − LK)−1(LK − L)(I − L)−1 , (20)
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we would have

‖fK − f‖Hs = ‖(I −LK)−1f0− (I −L)−1f0‖Hs = ‖(I −LK)−1(LK −L)(I −L)−1f0‖Hs ,

from which convergence of fK → f in Hs(Ω) could be readily obtained.

This, however, cannot be the case, as if LK → L as K →∞ in the operator norm

on Hs(Ω), then L, as a uniform limit of finite-rank operators, would be compact on

Hs(Ω). However, as L has a bounded inverse on Hs(Ω), it cannot be compact.

We thus need to resort to a slightly weaker notion of convergence, that is, we

shall consider the transfer operator as an operator between Sobolev spaces of different

order. In passing, we remark that this idea is also at the heart of one of the most

successful techniques to obtain spectral approximation results of transfer operators,

where perturbation sizes are measured in ‘triple’ norms (see, for example, [19]).

In the following we shall explain this idea in more detail. We start with the

following important observation. For t, s ∈ [0,∞)2 with s1 ≥ s2 > t1 ≥ t2 ≥ 0,

functions in Hs(Ω) can be identified with functions in H t(Ω) using the embedding

operator J : Hs(Ω) ↪→ H t(Ω) given by J f = f . This operator is not just continuous,

but also compact, as the following lemma shows.

Lemma 3.1. Let J : Hs(Ω) ↪→ H t(Ω) be the canonical embedding, where t, s ∈ [0,∞)2

with s1 ≥ s2 > t1 ≥ t2 ≥ 0. Let PK = PΛK
the projection operator in Equation (13),

and JK = JPK. Then,

‖J − JK‖Hs→Ht ≤ C(1 +K2)−α/2

for some C > 0 and α = (s2 − t1).

Proof. Let f ∈ Hs(Ω). Using the notation at(k) = 1 + |k1|2t1 + |2k2|2t2 we have

‖J f − JKf‖2
Ht =

3∑
i=1

∑
k∈Ii(K)

|ck(f)|2at(k),

with I1(K) = {k ∈ Z2 : |k1| ≥ K, |k2| ≥ K}, I2(K) = {k ∈ Z2 : |k1| < K, |k2| ≥ K},
I3(K) = {k ∈ Z2 : |k1| ≥ K, |k2| < K}. We will first show that there exists a constant

C ′ such that

at(k) ≤ C ′(1 + |k1|2 + |2k2|2)−αas(k) .

For this, first observe that

(1 + |k1|2 + |2k2|2)s2 ≤ Cs2(1 + |k1|2s1 + |2s2|2s2) ≤ Cs2as(k),

which follows by Hölder’s inequality and s1 ≥ s2. Then,

at(k) = 1 + |k1|2t1 + |2k2|2t1 ≤ 3(1 + |k1|2 + |2k2|2)t1

= 3(1 + |k1|2 + |2k2|2)t1−s2(1 + |k1|2 + |2k2|2)s2

≤ 3Cs2(1 + |k1|2 + |2k2|2)t1−s2as(k).
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Now, by bounding from above each (1 + |k1|2 + |2k2|2)−α with its maximal value in

each of the sums, we obtain

‖J f − JKf‖2
Ht ≤ C ′

(
(1 + 5K2)−α + (1 + 4K2)−α + (1 +K2)−α

)
‖f‖2

Hs

≤ 3C ′(1 +K2)−α‖f‖2
Hs .

We are now able to show that L can be approximated by finite-rank operators when

considered as operators from Hs to H t.

Proposition 3.2. Let LK = PKLPK be the finite-rank approximation of L on Hs(Ω)

with s ∈ N2 and s1 ≥ s2. Let J be as above and t ∈ N2
0 with s2 > t1 ≥ t2. Then

‖J (LK − L)‖Hs→Ht ≤ C(1 +K2)−α/2

for some C > 0 and α = s2 − t1.

Proof. Let L′ denote the transfer operator when considered on the larger space H t(Ω).

Then using the property JL = L′J , we have

J (Lk − L) = JPKLPK − JL = (JPK − J )LPK − L′(JPK − J ).

Thus,

‖J (LK − L)‖Hs→Ht ≤ (‖L‖Hs→Hs‖PK‖Hs→Hs + ‖L′‖Ht→Ht) ‖J − JK‖Hs→Ht

≤ C(1 +K2)−α/2,

where we have used Lemma 2.9, Lemma 3.1 and ‖PK‖Hs→Hs ≤ 1.

Proposition 3.3. Let L and the family (LK)K∈N be as above, considered as operators

on Hs(Ω) where s ∈ N2 with s1 ≥ s2. Then, for t ∈ N2
0 with s2 > t1 ≥ t2 and for all

K ∈ N we have

‖(I − LK)−1 − (I − L)−1‖Hs→Ht ≤ C(1 +K2)−α/2,

for some C > 0 and α = s2 − t1.

Proof. As r(L) ≤ ‖w‖∞ < 1 by Lemma 2.9, the operator (I − L)−1 exists and is

bounded. Let (L′K)K∈N denote the family of transfer operators when considered on the

larger space H t(Ω). Similarly, as ρ(L′K) ≤ ‖w‖∞ < 1 and the norms of (L′K)n are

bounded uniformly in K by Lemma 2.9, the sums
∑∞

n=0 ‖LK‖nHt→Ht are bounded by a

constant independent of K and therefore ‖(I − LK)−1‖Ht→Ht is uniformly bounded in

K.

Using the property J (I −LK) = (I −L′K)J and the second resolvent identity (see

Equation (20)) we have

‖J ((I − LK)−1 − (I − L)−1)‖Hs→Ht

= ‖(I − L′K)−1J (LK − L)(I − L)−1‖Ht

≤ ‖(I − L′K)−1‖Ht→Ht‖J (LK − L)‖Hs→Ht‖(I − L)−1‖Hs→Hs .

Using Proposition 3.2 for the bound on ‖J (LK − L)‖Hs→Ht finishes the proof.
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We are finally able to state and prove our main convergence result.

Theorem 3.4. Let L and the family (LK)K∈N be as above, considered as operators on

Hs(Ω) with s1, s2 ∈ N and s1 ≥ s2 > t1 ≥ t2 ≥ 0. Then for f0 ∈ Hs(Ω) the operator

equations (1) and (7) have unique solutions f ∈ Hs(Ω) and fK ∈ Hs(Ω), respectively.

Moreover there exist a constant C > 0 such that for all K ∈ N we have

‖fK − f‖Ht ≤ C(1 +K2)−α/2‖f0‖Hs ,

where α = s2 − t1.

Proof. The statement follows by writing f = (I−L)−1f0, fK = (I−LK)−1f0 and using

Proposition 3.3.

Remark 3.5. Note that for f0 ∈ ΛK = PK(Hs(Ω)), the unique solution fK to (7)

also lies in the finite-dimensional space ΛK , so that (7) can be solved as a truly finite-

dimensional problem.

4. Discussion and numerical experiments

Let us first summarise and rephrase our results in intuitive terms. Since the

linear operator in Equation (1) fails to be compact, any finite-dimensional matrix

representation would not reflect properties of the operator at all. Nevertheless the

finite-dimensional representation in (7) provides a meaningful approximation for the

solution of the inhomogeneous equation. For smooth periodic functions in location

and angle of reflection, the solution of the approximated problem (7) converges to the

solution of (1) in the Sobolev norm. The approximation error depends on the degree

of smoothness of the inhomogeneous part. In addition, the approximation error is

measured in a weaker norm, for instance the frequently used L2 norm for the choice

t = (0, 0). The properties of this weaker norm also determine the speed of convergence.

Broadly speaking, the convergence rate obeys a power law with the exponent being

determined by the smoothness of the energy source and the norm used to measure the

approximation error.

A finite amount of dissipation is a crucial ingredient in the entire approach, that is,

the weight w has to satisfy ‖w‖∞ < 1. The simplest choice of a constant weight,

w(x, y) = µ < 1, corresponds to a dissipation which occurs at each collision at

the boundary, for example, an attenuation of the sound wave caused by an inelastic

reflection at the boundary of the cavity. Proper modelling of the damping parameters

involved is a crucial aspect of the method and is necessary to describe realistic problems

accurately [17]. For example, a linear attenuation in the medium would result in a

path-length dependent weight w(x, y) = exp(−2µ cos(y)). This choice, however, does

not obey the stipulated bound as orbits with angles close to y = ±π/2 have arbitrarily

small path length, and hence small dissipation between subsequent collisions. We

could overcome this particular problem by restricting the angle of reflection to non-

tangential collisions, that is, y ∈ (−(1− ε)π/2, (1− ε)π/2) for a small ε > 0, effectively
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constraining the permitted type of energy source. This however requires changing the

Hilbert space and the projection operators, as the validity of ck(D
m
y f) = (i2k)mck(f)

and DyPk = PkDy is no longer given for a smooth function f on an interval instead of

on a circle. One suitable choice could be the space of functions in Hs(Ωε) with vanishing

weak derivatives Dνf on the boundary. A suitable basis is then the basis of Daubechies

wavelets [30].

Of course, a circular billiard is very special, exhibiting a smooth boundary and a

simple, analytically available collision map, making a rigorous treatment via Fourier

analysis possible. The next simplest billiard geometry is that of an ellipse. While

still an integrable smooth billiard with an explicit, albeit more complicated collision

map, the existence of hyperbolic periodic orbits imposes restrictions on either the

choice of function space or admissible weight functions (note that the spectral radius

of the unweighted composition operator, considered, for example, on H(1,1)(Ω), may

depend on the maximal expansion rate in the system). Moreover, without recourse

to a technical shortcut like Lemma 2.4, proving an analogue of Lemma 2.9 in this

setting might be more involved. In the case of chaotic billiards, hyperbolic orbits

are abundant, and hyperbolicity necessitates the use of more complicated anisotropic

function spaces to account for expanding and contracting directions, see, for example

[5, 6, 15]. Another important class are polygonal billiards, particularly relevant for

numerical computations in DEA. These systems have zero Lyapunov exponents and the

presence of discontinuities necessitates the use of function spaces including discontinuous

functions, such as Sobolev spaces of low regularity or spaces of bounded variation [25].

An approximation scheme based on Fourier analysis is less suited to these systems, and

Ulam-type discretisation schemes appear to have more potential.

To illustrate the impact of Theorem 3.4, we perform numerical simulations of

circular billiards with constant damping w(x, y) = µ. As a proxy for the error estimate

we use the distance between approximations of subsequent order ‖fK+1− fK‖Ht , which

obeys essentially the same upper bound

‖fK+1 − fK‖Ht ≤ ‖fK+1 − f‖Ht + ‖fK − f‖Ht ≤ 2C(1 +K2)−α/2‖f0‖Hs . (21)

Strictly speaking we have established this bound for integer vales of t` and s` only. With

a little more effort this could be remedied by appealing to interpolation theory [29]. For

simplicity of exposition we shall not pursue this here. For our numerical considerations

we take the liberty to apply the bound above for non-integer values. For the norm

‖ · ‖Ht , which estimates the truncation error, we use the choices t = (0, 0), that is, the

L2 norm, and t = (1, 1), a norm which is just outside the set of exponents guaranteeing

pointwise convergence.

The transfer operator’s action on Fourier modes is given in Equation (12). In order

to use it for a numerical test, we have to use a representation for all Fourier modes,

see Equation (A.2). We show results for three different choices of the initial boundary

density f0. They have in common that their support is given by the rectangle

R = {(x, y) : x ∈ [π/6, π/6 + 4π/3] , y ∈ [−0.8, 1.2]} .
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In order to define the boundary densities, we will use variables scaled on this rectangle

according to x̃ = (x− π/6) /(4π/3) and ỹ = (y+ 0.8)/2 which take values between zero

and one on R.

• Case G: a discontinuous function with f0(x, y) = 1 for (x, y) ∈ R. This function

is contained in H(1/2−ε,1/2−ε)(Ω) for any small ε > 0. For simplicity of exposition

we will use, however, the value s2 = 1/2 in the discussion of the numerical results

below.

• Case W1: a continuous function given by f0(x, y) =
√
x̃(1− x̃)

√
ỹ(1− ỹ) for

(x, y) ∈ R. This function lies in H(1−ε,1−ε)(Ω) for any small ε > 0. As before,

we use the choice s2 = 1 in the discussion below.

• Case W2: a smooth function given by f0(x, y) =
(√

x̃(1− x̃)
√
ỹ(1− ỹ)

)3

for

(x, y) ∈ supp(f0). This function lies in H(2−ε,2−ε)(Ω) for any small ε > 0 and

we use the choice s2 = 2 in our discussion.

The boundary densities above have their support in the rectangle R and exhibit

different degrees of smoothness. In particular, the common support only covers part

of the phase space and excludes the angles y = ±π/2. If we had chosen a boundary

density with support including these angles, that is, including tangential collisions, and

which was otherwise smooth, then the convergence would still be slow. In this case the

rate of convergence of the Fourier based approximation scheme would still be dominated

by the discontinuities which occur when the density is extended in the angle variable

y in a periodic fashion. Hence, choosing the variable y in Equation (2) to be cyclic is

rather natural for the approximation scheme discussed here. This cyclicity condition

cannot be dispensed with as the approximation scheme is based on Fourier expansions.

Other approximation schemes, for example, a two-dimensional Ulam method could be

investigated without imposing such a cyclicity condition, but this scheme does not

achieve a speed-up as a result of increased regularity of the boundary density.

The data shown in Figure 1 confirm the upper bound in Theorem 3.4. For the

L2 norm, t1 = t2 = 0, we observe, in each case, convergence at a rate which is slightly

faster than the theoretical prediction α = s2−t1. The power law decay of the truncation

error shows up for large values of K and the onset of this scaling region shifts towards

larger values if the initial boundary density becomes smooth. This should not come as

a surprise, since the resolution of higher order derivatives requires higher order Fourier

modes. For the parameter at the boundary of point-wise convergence t = (1, 1), we see

that the discontinuous boundary density fails to converge in line with our theoretical

predictions. While Theorem 3.4 does not guarantee convergence in case W1 either, the

numerical data suggest an extremely slow convergence which is still consistent with the

upper bound estimate α = s2−t1 = 1−1 = 0. Finally, for the smooth boundary density

(case W2) we observe a convergence rate slightly faster than the theoretical prediction.

From a dynamical perspective, circular billiards are trivial since the billiard map (2)

is an integrable twist map. In order to get an idea of how dynamical properties impact

on convergence properties we show numerical results for a deformed circle billiard which
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Figure 1. Error estimate ‖fK+1−fK‖Ht for a circular billiard with constant damping

w(x, y) = µ = 0.9 as a function of the truncation order K on a double logarithmic

scale. Left: t1 = t2 = 0 (convergence in L2 norm), right: t1 = t2 = 1 (point-wise

convergence, in essence). Results are displayed for three different initial boundary

densities G: s2 = 1/2 (yellow, top), W1: s2 = 1 (red, middle), W2: s2 = 2 (dark

blue, bottom), see text. Lines show the power law decay according to Equation (21),

α = s2 − t1.

displays mixed regular and chaotic dynamics. For the deformation we choose the radius

to depend on the polar angle x according to

r(x) = 1 + δ cos(mx), (22)

where we choose m = 3 in the following. Deformations of this kind are known in the

literature as Limaçon billiards [1]. We will cover the cases δ = 0.01 and δ = 0.1. For

larger values, the billiard fails to be convex. In order to demonstrate the change in

dynamical behaviour, Figure 2 shows the Poincare plot of the collision map T . For a

small value of the deformation, δ = 0.01, one still observes a fairly large number of

invariant tori in accordance with general KAM folklore. The larger perturbation shown

in Figure 2, δ = 0.1, destroys most of the regular motion and renders the system chaotic

with a few exceptions, for example, the highlighted period-3 island.

In order to calculate the convergence of the energy distribution we have to evaluate

the matrix elements of the transfer operator. For the circular billiard, the only non-zero

entries take the value ±µ and follow the structure given by Equation (A.2). Once the

circle has been deformed, the analytic calculation of the matrix elements is no longer

possible. Even worse, the collision map is not given in closed analytic form either,

so that an efficient numerical calculation becomes a nontrivial task (see the appendix

for details). However, we are able to reduce the calculation of the matrix elements to

double integrals with the kernel being given in closed analytic form, see Equation (A.3).

Nevertheless, the numerical evaluation is still time consuming, in particular, since the

matrix is no longer sparse. Hence, we can only calculate finite approximations up to

K = 30. In order to reach the scaling regime (see Figure 1 for comparison) we employ
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π/2

0 x 2π
−π/2
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Figure 2. Billiard with orbit in configuration space (left) and Poincare plot of the

boundary map T in the (x, y) phase space (right) for a deformed billiard according to

(22). Top: weak deformation of the circle (m = 3, δ = 0.01), bottom: strong but still

convex deformation (m = 3, δ = 0.1). The orbit depicted in real space is highlighted

in phase space as well.

a stronger damping of µ = 0.1. The results for the error measured in L2 norm, that is,

for the choice t1 = t2 = 0, are shown in Figure 3.

It is quite remarkable that the decay of the error is apparently almost unaffected by

the degree of chaoticity. Hence the rigorous error estimate of Theorem 3.4 which covers

the case δ = 0 seems to have a wider range of applicability. While intuitively such

an observation would not be surprising for nearly integrable cases it is quite counter-

intuitive that the same error estimate may hold as well in strongly chaotic situations.

However, our proof does not cover any of the deformed billiards and there does not seem

to be an obvious way how the methodology can be generalised to these complicated

cases. Nevertheless, it is reaffirming that our study of a simple dynamical system like

the circular billiard has relevance for more complex dynamical behaviour.
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Figure 3. Error estimate ‖fK+1−fK‖Ht in L2 norm, t = (0, 0), for the energy density

of a Limaçon billiard as a function of the truncation order K on a double logarithmic

scale. Constant damping w(x, y) = µ = 0.1 and two deformations, δ = 0.01 (left) and

δ = 0.1 (right), are considered. Results are displayed for the three different initial

boundary densities G: s2 = 1/2 (yellow, top), W1: s2 = 1 (red, middle), W2: s2 = 2

(dark blue, bottom), see Figure 1. Lines indicate a power law decay, α = s2 − t1,

according to the rigorous estimate for circle billiards.

Appendix A. Matrix elements

Consider a convex billiard with boundary being given by r(x) in polar coordinates

where x denotes the polar angle (see, for example, Equation (22)). Denote by (x′, y′) =

(Tx(x, y), Ty(x, y)) the collision map where x and x′ label subsequent collisions with the

boundary. Using a standard representation in terms of Fourier basis functions [28], the

matrix elements Ml,k of the transfer operator read

Ml,k =
1

2π2

2π∫
0

π/2∫
−π/2

(Cφek)(x, y) el(x, y) dydx

=
1

2π2

2π∫
0

π/2∫
−π/2

eik1φx(x,y)−il1x+2ik2φy(x,y)−2il2y dydx

with k = (k1, k2) and l = (l1, l2).

In case of the perfect circle we get a representation which is given by a sparse matrix

with only a few non-zero elements, close to the main diagonal, namely

(Cφel)(x, y) =
∑
k∈Z2

Ml,k · ek(x, y) (A.1)

with the matrix elements

Ml,k = (−1)k1 δk1,l1 δl2,k1+k2 k, l ∈ Z2. (A.2)
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This is the extension of Equation (12) to all Fourier modes and it was used to calculate

the values for Figure 1.

In order to eliminate the implicitly defined collision map we change integration

variables from (x, y) to (x, x′). Using y1(x, x′) = y and y2(x, x′) = y′ for the two

scattering angles the matrix elements become

Ml,k =
1

2π2

2π∫
0

2π∫
0

∣∣∣∣∂y2(x, x′)

∂x

∣∣∣∣ ei(k1x−l1x′)e2i(k2y1(x,x′)−l2y2(x,x′))dx′dx, (A.3)

where the additional factor is the Jacobian of the coordinate transformation. In contrast

to the collision map T , the expressions y1(x, x′) and y2(x, x′) can be obtained in closed

analytic form so that Equation (A.3) is easier to implement numerically.

1

2

x′ − x
r(x)

r(x′)

t
y

er

eϕ

d

Figure A1. Geometric configuration of two subsequent collisions in a convex billiard

with a particle moving from point 1 (with parameter value x) to point 2 (with

parameter value x′). We also depict the ray vector d, the tangent vector t, and the

unit vectors er and eϕ in polar coordinates.

Figure A1 shows a sketch of two subsequent collisions. The first scattering angle

y1 is given in terms of an inner product

sin(y1) = d · t/(|d||t|) .

Since the position vector of the initial point is given by r(x)er the tangent is easily

obtained as t = r′(x)er + r(x)eϕ. The vector separating the two points of collision is

given in terms of the local basis vectors by

d = (r(x′) cos(x′ − x)− r(x))er + r(x′) sin(x′ − x)eϕ .
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Hence the closed form expression for the first scattering angle reads

sin(y1) =
r′(x)(r(x′) cos(x′ − x)− r(x)) + r(x)r(x′) sin(x′ − x)√
r2(x) + (r′(x))2

√
r2(x) + r2(x′)− 2r(x)r(x′) cos(x′ − x)

. (A.4)

The second scattering angle is obtained by interchanging the two points in Figure A1,

that is, by swapping x and x′ in Equation (A.4), and including an additional minus sign

for the outgoing angle

sin(y2) = − r′(x′)(r(x) cos(x− x′)− r(x′)) + r(x′)r(x) sin(x− x′)√
r2(x′) + (r′(x′))2

√
r2(x′) + r2(x)− 2r(x′)r(x) cos(x− x′)

.
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