
Chapter 1
Ray-tracing the Ulam way

D. J. Chappell, M. Richter, G. Tanner, O.F. Bandtlow, W. Just and J. Slipantschuk

1.1 Introduction

Ray-tracing is a well established approach for modelling wave propagation at high
frequencies, in which the ray trajectories are defined by a Hamiltonian system of
ODEs [Ce01]. An approximation of the wave amplitude is then derived from es-
timating the density of rays in the neighbourhood of a given evaluation point. An
alternative approach is to formulate the ray-tracing model directly in terms of the
ray density in phase-space using the Liouville equation. The solutions may then be
expressed in integral form using the Frobenius-Perron (F-P) operator, which is a
transfer operator transporting the ray density along the trajectories [CvEtAl20]. The
classical approach for discretising such operators dates back to 1960 and the work of
Stanislaw Ulam [Ul64]. The convergence of the Ulam method has been established
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in some cases, typically in low dimensional settings with continuous densities and
hyperbolic dynamics, see for example [Li76, Fr99, BoMu01].

In this chapter we outline some recent work investigating the convergence of
the Ulam method for ray tracing in triangular billiards, where the dynamics are
parabolic and the flow map contains jump discontinuities. This study builds upon
recent work on ray tracing in circular billiards [SlEtAl20], where it was found that a
spectral Fourier Galerkin approximation of the F-P operator gave faster convergence
rates than would be possible using the Ulam method, and the precise rate depends
critically on the regularity of the boundary data driving the problem. However, the
rigorous study of polygonal billiards such as the triangle is innately more challeng-
ing owing to the presence of vertices. In particular, the momentum component of
the boundary flow map, which defines the phase-space coordinates of the ray tra-
jectory at discrete times corresponding to boundary collisions, is discontinuous at
the vertices. The presence of these discontinuities necessitates the use of function
spaces including discontinuous functions, such as Sobolev spaces of low regularity
or spaces of bounded variation [Ke85, Sa00]. A Galerkin projection using a Fourier
basis as proposed for circular billiards in [SlEtAl20] and analysed within a Sobolev
function space setting is therefore less suited to polygonal billiards, since there is no
smoothness of the boundary flow map to exploit. Instead, Ulam-type methods ap-
pear to provide a more natural fit owing to their use of discontinuous basis functions
that better reflect the properties of the F-P operator here.

In the remainder of this chapter we will first outline a mathematical model for
propagating ray densities using transfer operators. We then describe the discretisa-
tion of this model using the Ulam method for triangular domains, as well as giving
some pointers towards a convergence analysis for this discretisation. Finally, we
draw some conclusions from our findings and discuss some related studies where
faster convergence rates are plausible.

1.2 Ray-tracing via transfer operators

The transport of densities along a ray trajectory flow map ϕτ through time τ

and space Rd can be formulated in terms of the F-P operator (see, for example,
[CvEtAl20]). The action of this operator on a density f may be expressed as

L τ f (X) =
∫

δ (X−ϕ
τ(Y )) f (Y )dY,

where X and Y are phase-space coordinates in R2d . Solving such problems when
d > 1 and for physically relevant systems is often considered intractable due to both
high dimensionality and potentially complex geometries [SiEtAl07].

In this work we reformulate the F-P operator as a phase-space boundary inte-
gral operator, which is discretised using the Ulam method. We restrict our attention
to modelling the propagation of a density f through a convex polygonal domain
Ω ⊂ R2. Let us assume that the ray trajectory flow is governed by the Hamiltonian
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H(rrr, ppp) = |ppp| = 1 in Ω , where rrr ∈ Ω and ppp is the momentum coordinate. Let the
phase-space P on the boundary of Ω be written P = ∂Ω × (−1,1). Then the asso-
ciated coordinates are given by X = [s, p] ∈ P with s ∈ [0,L) parameterising ∂Ω ,
where L is the total length of the boundary, and p∈ (−1,1) parameterising the com-
ponent of the inward unit vector ppp tangential to ∂Ω . Next we define ϕ : P→ P to be
the boundary flow map, which takes a vector in P and maps it along the Hamiltonian
flow defined by H to a vector in P. The propagation of the density f along the map
ϕ is given by a modified F-P operator acting on this map as follows

L f (X) =
∫

P
µ(Y )δ (X−ϕ(Y )) f (Y )dY. (1.1)

The operator L describes the propagation of f along a trajectory between two
points on the boundary of Ω , together with a specular reflection at the arrival point.
The term µ : P→ (0,1) is incorporated to model energy losses at boundary reflec-
tions.

The stationary density ρ on P due to an initial boundary distribution ρ0 on P is
the density accumulated in the long time (many iterate) limit. That is

ρ(X) =
∞

∑
n=0

L n
ρ0(X), (1.2)

where L n is the nth iterate of the operator (1.1). Note that the incorporation of
the dissipative term µ within (1.1) is necessary for the sum (1.2) to converge. The
stationary density ρ may then be obtained as the solution of the following integral
equation

(I−L )ρ = ρ0 (1.3)

via the standard Neumann series result for (1.2).

1.3 The Ulam method

In this section we restrict our attention to the case when Ω is a triangle. We first
outline the implementation of the Ulam method to discretise the integral equation
(1.3), before briefly discussing some of the building blocks that we believe will lead
to a rigorous convergence analysis of the resulting numerical approximation of the
stationary density ρ .

1.3.1 Implementation of the Ulam method

In order to apply the Ulam method to discretise (1.3), we first sub-divide the bound-
ary phase-space P = [0,L)× (−1,1) into MN rectangles Rm,n, with m = 1,2, . . . ,M



4 D. Chappell et al.

and n = 1,2, . . . ,N. We do this by performing an equi-spaced subdivision along
the p coordinate with step-size ∆ p = 2/N, and along each edge of the triangle
e= 1,2,3 we perform an equi-spaced subdivision with step-size ∆se = Le/Me where
M = M1 +M2 +M3 and Le is the length of edge e. The number of sub-intervals on
edge e, Me is defined by first choosing a target number of subdivisions for the whole
boundary of length L = L1 +L2 +L3 as M∗ and then taking Me = Round(M∗Le/L),
with Round denoting rounding to the nearest integer.

The stationary density ρ is now approximated by its projection PMNρ onto a
finite dimensional space of piecewise constant functions of the form

ρ(s, p)≈ (PMNρ)(s, p) =
M

∑
m=1

N

∑
n=1

ρm,n

∆se(m)∆ p
χm(s)χn(p), (1.4)

where χn(p) = 1 if 2(n− 1)/N < p < 2n/N and is zero otherwise. Likewise,
χm(s) = 1 is an indicator for the mth sub-division of the s-coordinate. The index
e(m) = 1 for m = 1,2, . . . ,M1, e(m) = 2 for m = M1 + 1,M1 + 2, . . . ,M1 +M2 and
e(m) = 3 for m = M1 +M2 +1,M1 +M2 +2, . . . ,M.

A Galerkin projection of equation (1.3) onto the finite dimensional basis (1.4)
may be written in the form

(I−T )ρρρ = ρρρ000, (1.5)

where I is the NM×NM identity matrix and T is a matrix with entries

Tα,α ′ = µ

∫
P

(
1

∆se(m′)∆ p

∫
P

δ (X−ϕ(Y ))χm′(s
′)χn′(p′)dY

)
χm(s)χn(p)dX ,

=
µ

∆se(m′)∆ p

∫
P

χm(ϕs(s′, p′))χn(ϕp(s′, p′))χm′(s
′)χn′(p′)dY,

= µ
Area(Rm′,n′ ∩ϕ−1(Rm,n))

Area(Rm′,n′)
.

In the second line we note that the boundary map ϕ has been split into its position
and momentum components, which are denoted ϕs and ϕp, respectively. In addition,
Area(Rm′,n′) = ∆se(m′)∆ p denotes the area of Rm′,n′ , Y = [s′, p′], α = m+(n−1)M
and correspondingly α ′ = m′+(n′−1)M. The vector ρρρ = [ρα ]α=1,2,...,MN contains
the coefficients ρm,n = ρα from the basis expansion (1.4). The vector ρρρ0 contains
the corresponding coefficients for the expansion of the initial density ρ0 in the form
(1.4). Furthermore, we have assumed that the damping factor µ is constant for sim-
plicity. In the next section we outline a theoretical setting that we believe will lead to
rigorous analysis for the convergence of the approximation (1.4) obtained by solving
(1.5).
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1.3.2 A route toward rigorous analysis

The theory underpinning our analysis stems from the work of Keller in the eighties
[Ke85]. We conjecture that a function space setting that remains invariant under
the action of L can be devised using spaces of functions of generalised bounded
variation Vφ for a particular choice of the map φ . In fact Vφ are Banach spaces when
φ : [0,η0]→ [0,∞) is a monotonically increasing map with limη↓0 φ(η) = 0. To
define the norm on Vφ , we first introduce the oscillation of a function f in a set
A⊂ R2 as

osc( f ,A) = esssup(x,y)∈A×A| f (x)− f (y)|.

The norm on Vφ may then be written as

‖ f‖φ := ‖ f‖L1 + sup
η∈(0,η0]

∫
R2 osc( f ,Bη(x))dx

φ(η)
,

where ‖ ·‖L1 denotes the standard L1 norm and Bη(x)⊂R2 is an open ball of radius
η and centre x.

Assuming that L f ∈ Vφ for every f ∈ Vφ , then Lemma 1.11 from [Ke85] pro-
vides

‖ f −PMN f‖L1 6 φ(h)‖ f‖φ ,

where h =
√

∆s2 +∆ p2 and ∆s = maxe{∆se}. That is, the convergence rate de-
pends critically on φ , as does the validity of the assumption L f ∈ Vφ . Evidence
from numerical experiments typically shows first order convergence, correspond-
ing to φ(h) ∝ h. However, the assumption of L f ∈ Vφ would break down in this
case owing to the discontinuities in the boundary map ϕ . We conjecture that instead
choosing

φ(h) = |ln(h)|−β

with fixed β ∈ N will provide the necessary assumption of L f ∈ Vφ for every
f ∈ Vφ . The price that we pay for this choice is a rather slower logarithmic con-
vergence rate. We remark that sub-linear convergence of the Ulam method has pre-
viously been proved rigorously for piecewise expanding interval maps [BoMu01]
and appears to be a realistic starting point for our analysis here.

1.4 Conclusions and outlook

We have introduced a ray-tracing model for the propagation of phase-space densities
through convex polygonal domains, which was expressed in terms of a damped
F-P operator L for the boundary flow map ϕ . The stationary density ρ may be
obtained from the solution of a second-kind Fredholm equation (1.5). We discussed
the discretisation of (1.5), and consequently the damped F-P operator L , using the
Ulam method. Some ideas were then proposed regarding how one may prove the
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convergence of the solution obtained via this discretisation to the solution of the
original problem. We only expect to obtain sub-linear convergence rates and the
reason for this slow convergence can be directly linked to the lack of regularity of
the boundary map ϕ for the triangle, or indeed any convex polygon.

We note that there are a number of settings in which one can realistically hope for
faster convergence of discretisation schemes for estimating ρ , such as for domains
with smooth boundaries. This was explored further in [SlEtAl20], where rigorous
convergence estimates were established for circular billiards using a Fourier basis
approximation of ρ and more general smooth domains were investigated numer-
ically. A further case that may yield faster convergence rates is that of stochasti-
cally smoothed F-P operators, which describe uncertain ray dynamics [ChTa14]. A
significant advantage in this case is that the transfer operator is compact meaning
one can draw upon a considerably wider body of supporting theory as discussed in
[BaCh18].
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