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Polygonal billiards constitute some of the simplest yet counterintuitive dynamical systems in
physics. Even basic features of the dynamics, such as ergodicity of the microcanonical distribution
or the decay of correlations have not been settled in general. In this numerical study, we will
highlight the importance of symmetries of the billiard table for the resulting dynamics. While
typical triangular billiards appear to show correlation decay, symmetric billiards may not even be
ergodic with respect to the uniform distribution in phase space.
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Introduction The study of complex dynamical be-
haviour is one of the most vibrant areas of research at the
interface of mathematics, theoretical physics, and their
application to real world phenomena. While challenges
remain, the basic mechanisms for chaotic dynamics such
as sensitivity, hyperbolicity, and correlation decay have
by now been identified, see e.g., [1–4]. The next fron-
tier of understanding in dynamical systems theory thus
lies in systems without uniform hyperbolicity or with-
out exponential decay of correlations (typically, parabolic
systems), an area sometimes referred to as anomalous
dynamics, see e.g., [5, 6] for typical references covering
the wide range from rigorous mathematical approaches
to real world applications. Polygonal billiards are the
simplest prototypes of such systems [7], with the mech-
anisms for the creation of sensitivity or irregular motion
poorly understood to date.

There is a substantial body of mathematical literature,
in particular for rational billiards, where angles between
sides are rational multiples of π. The wealth of knowledge
about rational billiards is due to the possibility of invok-
ing the machinery of interval exchange transformations,
which makes it possible to develop computable criteria
for various dynamical properties such as minimality [8],
ergodicity [9], or weak mixing [10], while (strong) mix-
ing and even the occurrence of a mixing factor can be
excluded by the seminal result [11]. Polygonal billiards
which are weakly mixing have been described in [12]. To
the best of our knowledge, the only result concerning
general polygonal billiards is the ergodicity of Lebesgue
measure for billiard tables that are typical in a certain
sense [13]. The key method used here involves sophis-
ticated approximations of general polygons by polygons
with angles which are rational multiples of π. A con-
structive example can be found in [14]. For accessible
reviews giving further insight into this fascinating field
see, e.g., [15–17].

Due to the limited mathematical progress for irrational
billiards the analysis in the physics literature has been
entirely based on numerical simulations, see e.g. [18, 19].
Numerical results indicate that irrational billiards are er-

godic with respect to Lebesgue measure, while the cor-
relation decay indicates weak and even strong mixing,
see [20, 21]. However, as pointed out recently [22] the
numerical results are not fully conclusive. Here we re-
visit this strand of research and point out another facet
of this problem, namely the role of symmetry. In the
absence of a suitable mathematical machinery we will re-
sort to an extensive numerical analysis. While our analy-
sis may not be fully conclusive, our results point towards
a surprisingly rich dynamical structure, given that the
underlying dynamics looks almost trivial. On the one
hand our analysis reinforces the belief that typical irra-
tional asymmetric billiards are ergodic and mixing. On
the other hand ergodicity seems to be questionable for
symmetric billiards.

Mixing in general asymmetric triangles The renewed
interest in general billiards with irrational angles was
triggered by [18, 19], which provided numerical evi-
dence for correlation decay in systems without an ob-
vious mechanism like sensitivity. This makes polygonal
billiards one of the most challenging mathematical and
theoretical subjects of our time.

To begin, we revisit this setup. We consider a trian-
gle with inner angles α, β, and π − α − β and we focus
on the generic case with α/π and β/π irrational, and all
angles distinct. For the purpose of our simulation we
take α = π(

√
2 − 1)/4 and β = π(

√
5 − 1)/4 but the re-

sults quoted below do not seem to depend substantially
on these particular values. To capture the dynamics we
consider the billiard map T which gives the relation be-
tween two subsequent bounces with the boundary. As
usual we use so-called Birkhoff coordinates (s, p) where s
denotes the position of the bounce measured in terms of
the arclength along the boundary and p = cos(φ) is the
velocity component of the outgoing ray, tangential to the
boundary, while assuming that the particle moves with
unit speed. Using these coordinates the billiard map is
area preserving so that Lebesgue measure in phase space
constitutes an invariant measure of the system.

The quantity of interest is the autocorrelation function
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of an observable f which is given by

Cff (n) = 〈f · f ◦ Tn〉µ − 〈f〉2µ (1)

where 〈. . .〉µ denotes the average with respect to an in-
variant measure µ. Based on rigorous results for rational
billiards, and lacking an obvious mechanism, one would
not expect the correlation function to decay, i.e., the bil-
liard map to be mixing, see e.g. [15]. The best one could
hope for is weak mixing, see [11], implying that correla-
tion functions do not tend to zero, while their absolute
Cesaro sum

∑N−1
n=0 |Cff (n)|/N tends to zero as N →∞.

Hence, the results of [18, 19] came as a slight surprise
as the numerical simulations appeared to indicate that
correlations may decay.

For the numerical computation of the correlation func-
tion we use a standard FFT approach. We chop a long
time series into shorter pieces, use a Fourier transform
and the Wiener-Khinchin theorem to compute the auto-
correlation and finally take the ensemble average over all
the pieces. In between we discount the zero frequency
component to account for the autocovariance. This ap-
proach is able to cope with cases where the invariant
density is not known a priori, as the ensemble average,
based on a time series, realises the physical invariant mea-
sure. For the billiard map considered here, the result of
this approach (see Fig. 1) is numerically identical to a
computation using initial conditions sampled uniformly
at random, thus providing further evidence for the er-
godicity of Lebesgue measure.

Mixing requires correlations to decay for all square in-
tegrable observables f . In simulations one can only check
very few observables, and one often insinuates that the
findings are generic. In our case we have checked a few
observables, involving arclength s and momentum p, all
revealing essentially the same properties.

The correlations of p (see Fig. 1) show a power law
decay with a levelling off at large time scales. The large
time plateau value scales with the ensemble size consis-
tent with that for sums of independent random numbers
(see inset in Fig. 1). Hence there is compelling evidence
that this levelling off is caused by sampling errors due to
finite sample size. For the setup of Fig. 1 we observe a
power law decay for Cpp(n) with exponent −1.4. Corre-
lations for a range of other irrational triangles and ob-
servables show the same qualitative behaviour, but the
exponent reveals a weak dependence on the observable
and a considerable dependence on the angles of the tri-
angle.

The properties shown in Fig. 1 are typical for simula-
tions of a larger class of observables and triangles. No
major number theoretic impact of the irrational angle
values is visible, and the simulations give support for
mixing in asymmetric generic irrational triangles. In ad-
dition, the same feature can be found in simple model
maps which have been proposed to exhibit properties of
billiard maps [20], see also [21]. Unfortunately, no basic

FIG. 1. Autocorrelation function of the momentum p on a
double logarithmic scale for an asymmetric billiard with inner
angles α = π(

√
2 − 1)/4 and β = π(

√
5 − 1)/4. Data have

been computed from a time series of length 230 with ensembles
of initial conditions of different sizes: dark blue (top) N = 1,
light blue (second from top) N = 10, red (third from top) N =
100, yellow (bottom) N = 1000. For visibility, values have
been shifted by a factor of 10−1. The solid black line indicates
a power law decay with exponent −1.4. The inset displays
the dependence of the plateau for large time as a function of
the ensemble size, measured in terms of the maximum (dark
blue circles), the absolute mean (light blue triangles), and the
variance (red squares). The additional black lines indicate a
power law decay with exponents 1/2 (dashed) and 1 (dash-
dotted).

mechanism, let alone a mathematical approach, has been
identified so far to put the conjecture of correlation decay
in typical triangular billiards on a firm basis.

Ergodicity breaking in isosceles triangles By the sem-
inal result of [13], Lebesgue measure is ergodic for trian-
gular billiards for a large set of angles, when the prop-
erty being a large set is measured in topological terms.
As indicated by [18] and the results of the preceding sec-
tion, this in fact seems to hold in typical numerical sim-
ulations. However one has to recall that the question
of ergodicity of typical polygonal billiards is largely un-
solved, as, e.g., it is unclear whether the set of ergodic
billiards has positive Lebesgue measure [7]. Nevertheless
the opinion seems to prevail that in typical numerical
simulations a generic triangular billiard is ergodic with
respect to Lebesgue measure.

A substantial amount of numerical results have been
produced for right-angled triangular billiards. A careful
examination of those data, (see, e.g., [18]), and recent
numerical results [22] cast some doubt on the ergodicity
of Lebesgue measure in these systems. In fact, right-
angled billiards are closely related to symmetric billiards
if one uses a Zemlyakov-Katok construction to unfold
the billiard dynamics [23]. Hence we focus here on the
symmetric case α = β and study the ergodic properties of
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the uniform invariant distribution by numerical means.
A necessary condition for the ergodicity of the measure

µ is a vanishing Cesaro limit of the correlation function,
i.e.,

∑N−1
n=0 Cff (n)/N → 0 as N →∞. Thus, in order to

measure ergodicity of the uniform distribution we intro-
duce the order parameter

ΦN =
1

N

N−1∑
n=0

〈f · f ◦ Tn〉Leb. , (2)

which is well known from solid state physics, measuring
spontaneous symmetry breaking in phase transitions. If
Lebesgue measure is ergodic then limN→∞ ΦN = 〈f〉2Leb..
Restricting to observables with vanishing Lebesgue aver-
age, 〈f〉Leb. = 0, one can disprove ergodicity of Lebesgue
measure by showing that ΦN does not vanish as N →∞.

For our numerical studies we use the observable f =
sin(2πs/L) with L the perimeter of the triangle. This ob-
servable encodes the position on the boundary and has
vanishing Lebesgue average. We consider a symmetric
triangle with α = β and compare findings to cases with
slightly distorted symmetry, β = α−πε with ε > 0. Our
findings do not substantially depend on the particular
value of α. For numerical evaluation of the correlation in
Eq.(2) we use the FFT-based method described above,
now with a uniform random ensemble of initial condi-
tions.

FIG. 2. Order parameter ΦN , see Eq.(2), on a double-
logarithmic scale for a symmetric triangle (dark blue, solid
dark grey) with α = β = π(

√
5− 1)/4 and asymmetric trian-

gles with β = α− πε with ε = 10−3 (dashed light blue), 10−5

(dash-dotted red), and 10−7 (yellow, solid light grey), along
with the right-angled triangle α = π(

√
5 − 1)/4, β = π/2

(dotted dark blue/grey). The correlation functions have been
computed via a Fourier transform of time series of length 227.
The ensemble average has been computed using 104 randomly
generated initial conditions. The inset shows 1/ΦN for the
symmetric case as a function of N on a double-logarithmic
scale.

Fig. 2 shows the dependence of the order parameter on
N . For slightly asymmetric triangles the order parameter
tends to zero, and this tendency becomes stronger with
increasing distortion. These findings support ergodicity
of Lebesgue measure in asymmetric cases. In the sym-
metric case, results are not fully conclusive. The order

parameter has no clear limit, it may either tend to a fi-
nite value or it may tend towards zero in an extremely
slow fashion, see inset of Fig. 2. The data support ergod-
icity breaking of Lebesgue measure or, at least, point to-
wards a very slow sub-logarithmic time scale which is not
amenable to direct simulations. Above all, the findings
for the symmetric case clearly differ from the asymmetric
case where the order parameter algebraically converges to
zero.

In order to shed more light on the ergodicity of
Lebesgue measure, we evaluate the distribution of finite
time ergodic averages

PN (z) = 〈δ(z − p̄N )〉Leb. (3)

where

p̄N =
1

N

N−1∑
n=0

p ◦ Tn (4)

denotes the average of momentum. Properties of the dis-
tribution (3) may help to identify different ergodic com-
ponents of the system. Numerical results in the cases of
symmetric and distorted asymmetric triangles are shown
in Fig. 3. The distorted asymmetric triangle shows scal-
ing of the distribution according to large deviation the-
ory with PN (z) ∼ exp(−Nφ(z)) where the maximum and
variance follow a law of large numbers with exponential
tails. Again, the symmetric triangle is vastly different:
the distribution (3) shows almost no scaling with N . This
could point towards a flat non-equilibrium potential and
many ergodic components which the uniform distribution
is composed of.

In order to illustrate the strange ergodic behaviour of
symmetric triangular billiards we finally evaluate the ac-
tual point-wise convergence of individual ergodic aver-
ages, see eq.(4), for a given initial value (s0, p0). Fig. 4
shows the convergence of the ergodic average of momen-
tum. For an asymmetric or slightly distorted billiard one
finds convergence of the ergodic average to the analytic
value 〈p〉Leb. = 0, in line with ergodicity of the uniform
distribution. In stark contrast, in the symmetric case, er-
godic averages may not even converge and a meandering
on exponentially long time scales appears to prevail.
Conclusion We have provided compelling numerical

evidence that the symmetry of triangular billiards plays
a crucial role for the ergodic properties of the dynamics.
While for typical irrational triangles, correlations with
respect to Lebesgue measure appear to decay, the uni-
form distribution does not even appear to be ergodic in
isosceles irrational triangles.

The role of symmetry can be convincingly demon-
strated when comparing results from a symmetric tri-
angle with a corresponding right-angled triangle. If one
unfolds the dynamics of a right-angled triangle at one of
the catheti one obtains the dynamics in a symmetric tri-
angle with an almost two-to-one correspondence between
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FIG. 3. Distribution of the finite time ergodic average of mo-
mentum p, see eq.(3), on a semi-logarithmic scale. Top: sym-
metric triangle with α = β = π(

√
5− 1)/4, middle: distorted

symmetric triangle with β = α−π10−3, bottom: right-angled
triangle with α = π(

√
5−1)/4, β = π/2. Top lines (dark blue)

correspond to N = 104, middle lines (light blue) to N = 105,
and bottom lines (red) to N = 106. Data have been computed
from a uniform random ensemble of initial conditions with en-
semble size 106. The distributions have been generated as a
histogram with bin size 4 × 10−4. The insets show the half-
width (dark blue circles) and standard deviation (light blue
triangles) for the three values of N , along with the trivial

scaling 1/
√
N (dashed).

the orbits of both systems [23]. While there is no obvious
relation between the ergodic properties of both systems
one would expect that the dynamics in both triangles
is closely related. However, if we perform the preceding
simulations for a right-angled triangle then the signatures
of a non ergodic Lebesgue measure seem to disappear, as
already reported in [18], where evidence for weak mix-
ing has been found. No anomalous dependence in the
convergence of ergodic averages seem to be visible (see

FIG. 4. Ergodic averages, see eq.(4), on a semi-logarithmic
scale, for a symmetric triangle with α = β = π(

√
5 − 1)/4

(dark blue, dark grey), distorted triangle with β = α−π10−7

(red, mid-grey), and a right-angled triangle with α = π(
√

5−
1)/4, β = π/2 (yellow, light grey) for fixed initial condition
(s0, p0) = (0.5, 0.64).

Fig. 4), the order parameter scales in a normal way (see
Fig. 2) and the distribution of finite time averages shows
a scaling which is broadly in line with the behaviour in
asymmetric triangles (see Fig. 3). Hence, at least the pro-
nounced anomalous behaviour of the symmetric case does
not show up in the corresponding right angled triangle
and the strange relaxation behaviour can be attributed to
the symmetry of the system, since a very closely related
asymmetric case does not share such a feature.

At first glance the difference between the dynamics
in symmetric and right-angled triangles is rather strik-
ing. The Zemlyakov-Katok unfolding alluded to earlier
maps each orbit of the symmetric triangle as well as
its mirror image to an orbit of the corresponding right-
angled triangle. Furthermore, time averages of symmet-
ric observables in the symmetric triangle are also mapped
onto time averages of orbits in the right-angled triangle.
However, this two-to-one mapping cannot be easily in-
verted. While it is numerically possible to reconstruct
orbits and averages of the symmetric triangle from or-
bits of the right-angled triangle, the corresponding pro-
cedure requires tracking the entire orbit (except, perhaps,
for observables respecting the symmetry of the triangle).
As the dynamics in polygonal billiards exhibits long-time
correlations, this construction does not yield ordinary er-
godic averages and hence the dynamics in both cases may
differ for observables not respecting the symmetry of the
underlying triangle, as e.g., for the data in Fig. 4. Fur-
thermore, even the existence of a one-to-one mapping
between orbits of two given dynamical systems, or more
precisely a topological conjugacy, does not entail any re-
lation between ergodic properties and time averages of
the two systems. As an example, [28] shows that the
tent map with constant slope, constant invariant density,
and fast correlation decay is conjugate to the Farey map
(see e.g., [29] for the explicit calculation) which has a
marginally unstable fixed point, displays intermittency
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and ageing [30], and does not even have a well-defined
invariant density. Hence, there is no a priori internal
contradiction that ergodic properties in symmetric trian-
gles may substantially differ from those in right-angled
triangles.

The potential non-ergodicity of Lebesgue measure has
been pointed out recently [22] without making any ref-
erence to the underlying symmetry of the system. The
importance of symmetry is also mirrored by a toy map
modelling billiard dynamics [20]. This model shows fea-
tures similar to our findings when cases with and with-
out symmetry are compared. Finally, symmetry turns
out to be relevant when rational billiards are considered
and where better analytical insight can be gained. While
the uniform distribution is not ergodic in these cases,
one observes very slow convergence of ergodic averages
when isosceles rational triangles with large denominators
are investigated. All in all, these findings support the
claimed dichotomy between symmetric and asymmetric
billiards.

The matter turns out to be much more complex when
comparing the numerical findings with the few existing
rigorous results. The author of [14] provides an explicit
construction of certain irrational billiards with ergodic
Lebesgue measure, and these cases may cover certain
symmetric billiards as well. However, the numerical val-
ues for the angles have rather peculiar number theoretic
properties and hence these values may not typically be
encountered in actual numerical simulations. Therefore,
these rigorous results may not be in conflict with our
numerical findings. The situation is comparable to the
seminal statement in [13] that typical irrational billiards
have an ergodic uniform distribution. Here, typicality
is understood in a topological sense, but it remains an
open problem whether this means that such angles con-
stitute a set of positive Lebesgue measure [7], let alone of
full measure. Even though the question of ergodicity of
the uniform distribution in isosceles triangular billiards
cannot be answered currently, the stark difference of the
relaxation dynamics and time scales in symmetric and
asymmetric billiards is beyond any doubt a distinctive
effect of the symmetry.

This still leaves us with the question of what mech-
anism may be at work producing the strange dynami-
cal signatures in isosceles triangular billiards. One may
take some inspiration from interval exchange transforma-
tions, a class of maps which occur in the study of ratio-
nal billiards, but which also capture properties of general
parabolic dynamical systems. The explicit construction
given in [24] results in maps which are minimal, i.e., ev-
ery orbit is dense, but which have more than one ergodic
invariant density. This counterintuitive property points
to a strange dynamics where dense orbits meet the dif-
ferent ergodic components, resulting in an exponential
proliferation of the relaxation process. The exponential
proliferation of quasi-stationary periods for the time aver-

ages visible in Fig. 4 is also known from ageing dynamics.
This phenomenon is remarkably similar to that found in
stable heteroclinic networks [25, 26, 31], where the dy-
namics is dominated by exponentially increasing sticking
times to saddle points. In these cases symmetry plays
a crucial role as well. Polygonal billiards lack an obvi-
ous hyperbolic structure which underlies the heteroclinic
switching between hyperbolic saddles. However, there
exists analogous phenomena in simple one-dimensional
doubly intermittent maps [32]. These rigorous studies
emphasise again that topological features such as dense
orbits do not exclude the occurrence of strange ergodic
behaviour which resembles ageing dynamics and which
is visible in symmetric triangular billiards (see Fig. 4).
Even though we are currently lacking a deeper analytical
understanding for the phenomena occurring in symmetric
billiards, let alone a rigorous account, the analogies just
outlined may point towards a sophisticated heteroclinic
mechanism causing the ageing dynamics in certain sym-
metric triangular billiards. On a related note, the role of
symmetry in preventing mixing (and that of asymmetry
in causing it) has been proven for typical minimal locally
Hamiltonian flows, see [27] and references therein.

Without doubt, the apparent simplicity of polygonal
billiards belies the fact that their dynamics is counterin-
tuitive and their study a major challenge, with correla-
tion decay and ergodicity wide open questions. They may
serve as a testing ground for contemporary approaches in
dynamical systems theory, and may well develop into a
new paradigm for complex dynamical behaviour.
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