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2. CONTINUOUS-TIME STOCHASTIC PROCESSES

As before we have a collection of r.v’s, {X(t) : t € T'}. but now we take T'= R>¢ =
[0,00). In our examples, X () will always take on integer variables (i.e., the state space
will be a subset of Z).

2.1. The Poisson process.

Definition 2.1. A continuous-time stochastic process X (¢) us a Poisson process of rate
A (or intensity N) if
P1. X(0)=0.
P2. Forall s >0,t >0, X(s+1t) — X(s) ~ Po(\t).
P3. IfO <t <ty <--- <ty then X(tg)—X(tl), X(tg)—X(tg), ey X(tn)—X(tnfl)
are mutually independent r.v’s.

How might this process arise? suppose we want to count “events” occurring in (0, o).
Let N(t) denote the number of events in (0,¢]. (Note that N(0) = 0.) Suppose that
I1. If ¢ > s, the number N(t) — N(s) of events in time interval (s, ] is independent
of the times of events during (0, s].
12. Events are “rare” in the sense that

0, if r <0
1—Ah+o(h), ifr=0;
PIN(E+h) =n+r|N({) =n) = )\h—i—o(h)() ifr=1;
o(h), if r> 1.

(The notation o(h) stands for a function f(z) such that f(h)/h — 0 as h — 0.)

Theorem 2.1. The above conditions (1) and (2) imply that N(t) is a Poisson process
of rate .

Proof. Property P1 is immediate and P3 is straightforward, so we concentrate on P2.
Let pi(t) = P(N(t) = k). Our goal is to show that py(t) = e M(At)k/k! for all k,
which will imply that X (¢) ~ Po(At). As the process defined by (1) and (2) is time-
homogeneous, it will follow that X (s +¢) — X(s) ~ X(t) — X(0) ~ Po(At). So we’ll be
done if we can show that pg(t) is as given above.
Let’s consider how pj changes in a small interval [t, ¢ + h]:

pr(t+h) =P(N(t+h) =k)

k
=Y P(N(t)=j) P(N(t+h) =k |N(t)=4)  (Law of Total Probability)
7=0
k

=D pi(t) P(N(t+h) =k [ N(t) =j)

pr(t)(1 — Ah + o(h)), if k= 0;
pe—1(t) (AL +o(h)) + pr(t)(1 — Ah+ o(h)) + o(h), if k> 1.

—
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So
po(t+ h) = po(t) — Mpo(t) + o(h), and
pp(t+h) = )\hpk_1(t) + pi(t) — )\hpk(t) + O(h), for k> 1.
Le.,
Pr(t + h})l —olt) = App—1(t) = Apr(t) + OTh), for k > 1.

Letting h — 0,
po(t) = —Apo(t), and
Pr(t) = Apr—1(t) = Ape(t), for k> 1.

We can solve these equations, one at a time, for pg, p1,p2,.... (Formally, we are using
induction on k.) First, p)(t) = —Apo(t), so po(t) = ce™* for some c. But py(0) = 1, so
c=1and
(2) po(t) = e .

Now to k = 1. We have p|(t) = Apo(t) — Api(t), ie., pi(t) = Ae ™™ — Apy(t) or,
rearranging,
eMpl (1) + XeMpy(t) = A
Noting that the Lh.s. of this equation is the derivative of a product, we may write
(p1(t)eM)’ = X and, by integration, pi(t)eM = At + c. But p1(t) =0, so ¢ = 0 and
p1(t) = Me M,

Continuing to the general case, suppose we know that py_1(t) = e *(\)*=1/(k — 1)L
We saw earlier that p (t) = Apr_1(t) — Apg(t), so that

At /(t) A At (t) /\ktk_l
e e = —.
Py Dk (k—1)!
Again, noticing that the L.h.s. is the derivative of a product, we arrive at
)\ktkfl
t At/ — .
By integration, py(t)eM = Nt*/k! + ¢. But pi(t) =0, so ¢ = 0 and
v (AP
3 pult) = A

From (2) and (3) we see that N(¢) has Poisson distribution with parameter \t, as re-
quired. O
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2.1.1. Superposition and thinning. Suppose X (t) and Y (¢) are independent Poisson pro-
cesses. The process Z(t) = X (t)+Y () is the superposition of X (t) and Y (t), and counts
the totality of X-events and Y -events.

Lemma 2.2. Let X(t) and Y (¢t) be independent Poisson processes with rates A and p.
The stochastic process Z(t) = X (t) + Y (t) is a Poisson process with rate A + .

Proof. In time interval (¢,¢ + h] there is an X-event with probability Ah + o(h) and a
Y-event with probability ph + o(h). Thus

1—(A+p)h+o(h), ifr=0;
P(Z(t+h)—Z({t)=1) =< A+ uh+o(h), if r=1;
o(h), otherwise.

Comparing with the “infinitesimal description” of a Poisson process, we see that Z(t) is
a Poisson process of rate A + pu. (]

Let X (t) be a Poisson process of rate A, and p € (0, 1]. Consider the sequence of events
associated with X (t). Suppose that each event independently survives with probability p
and is lost with probability 1 — p. Denote by X (t) the thinned process defined by the
surviving events.

Lemma 2.3. Let X(t) be a Poisson processes with rate . The stochastic process X (t)
defined by the thinning procedure described above is a Poisson process with rate pA.

Proof. In time interval (t,¢ + h| there is an event with probability Ak + o(h) and this
event survives with probability p. Thus
1—pA\h+o(h), ifr=0;
P(X(t+h) — X(t) =7) = { pAh+o(h), if r=1;
o(h), otherwise.

Comparing with the infinitesimal description of a Poisson process, we see that X (t)is a
Poisson process of rate pA. O

2.1.2. Random variables associated with the Poisson process. Let T; = inf{t : X (t) =i}
be the time of occurrence of the ith event. The T; are called arrival times (or waiting
times). By convention, Ty = 0. Let S; = T; — T;_1, for i = 1,2, ..., be the time between
the (¢ — 1st and ith arrival. The S; are called interarrival times.
Consider T1 (= S1). We have
P(Ty <t)=P(X(t) >1)
=1-P(X(t)=0)
=1- e_M,

since the number of arrivals in (0, ¢] is distributed as Po(At). So the cumulative distri-
bution function (cdf) of Ty is Fr, (t) = 1 — e~ . Differentiating, the probability density
function (pdf) of Ty is fr, = Ae™*. Thus T3 ~ Exp()\).

Recall that the lack of memory property of the exponential distribution implies

P(Ty >t+s|Ty>s)=P(Th > t),
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which agrees with the lack of memory of the Poisson process.

Theorem 2.4. Forn > 1, T, has the Gamma distribution (see MTH 5121 Probability
Models), which has pdf

_ )\ntn—l e—At
(n—1)! '

fr, (1)

Proof. We'll treat the special case n = 2. (The case n = 1 was dealt with above.) The
general case is left as an exercise. By analogy with the calculation above for 77,

Fr,(t) =P(Ty <t) =P(X(t) > 2)
=1-P(X(t)=0)—-P(X(t)=1)
=1—e M Ae M.
Differentiating,
fr, (1) = Ae M — Xe™M 4 AZte M
= Ate M
as required. O
Theorem 2.5. 51,59, ... are independent r.v’s each with distribution Exp(\).
Sketch of Proof. For a fixed time s,
P((time to next arrival after s) <t) =1 — P(no arrival in (s, s + t])
=1—eM,
Similarly,
P(S, <t) =1—P(no arrival in (T},—1,T,—1 + t])
=1—e M

independently of S, Ss,...,S,-1. (This is not entirely rigorous, as (T,—1,T,—1 + t] is
not a fixed interval; its endpoints are r.v’s. The fix is rather technical and beyond the
scope of the module.) O

2.1.3. Conditioning on X (t) = n. If we know that X (¢) = n (i.e., there are n events in
(0,t]), what can we say about how they occur in (0, ¢]?

Theorem 2.6. If 0 < u <t and 0 < k <n then

P(X(u) =k | X(t) =n) = <Z> (%)k(l - %)"‘k.

In other words, the conditional distribution is Bin(n, %) regardless of .
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Proof.

[e”\“()\u)k/k!] X [e”\(t’“)()\(t —u))"F/(n — k)']
e M(\t)" /n!
(Au)F(\(t — u))"F n!
(A" K (n — k)!

<Z> uF(t tnu)“k

() -

One consequence is that
P(Ty <u| X(t)=1)=P(X(u)=1| X(t)=1) = %

In other words, conditioned on there being exactly one event in the interval (0,¢], that
event is distributed uniformly in the interval. More generally

Theorem 2.7. Let 11,15, ... be the arrival times of a Poisson process of rate A, and f
be a symmetric function on n variables. Then

E(f(Th, Tz, ..., Tn) | X(t) = n) = E(f(UL,...,Un)),

where U; are independent r.v’s, uniform on [0,t].

2.2. Birth processes. A birth process with parameters Ag, A1, A2, ... is a continuous-
time process X (t) satisfying
e X(0)>0.
[
0, if r <0
1—Xyh+o(h), ifr=0;
P(X(t+h)=n+r|X(t)=n) =
X ) | X(@) ) Anh + o(h), if r=1;
o(h), it r > 1.

o If s < t then X(¢) — X(s) conditioned on X(s) is independent of the process
prior to s.
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As with the Poisson process we can find differential equations defining the process.
Let p,(t) = P(X(t) = n) and suppose X (0) = a. Then for n > a,

Pa(t+h) =iP(X(t+h) =n|X(t) =k)PX() = k)
k=0

=P(X(t+h)=n]|X(t)=n)P(X(t)=n)
+PXE+h)=n|X{t)=n—1)PX{E)=n—-1)+0(h)
= (1= Xph+0(h)pn(t) + (Au—1h + o(h))pr—1(t) + o(h).
So

o(h)

Palt £1) =on) 5 ) () + h

Letting h — 0,

p%(t) = —Anpn(t) + An—1pn-1(1),
where for n < a we let p,(t) = 0. The initial conditions are p,(0) = 1 and p,(0) = 0 for
n> a.

Theorem 2.8. If X (t) is the birth process with X (0) = a and parameters Mg, Aa41, - - -
then the equations p,(t) = —Appn(t) + An—1pn—1(t) for n > a have a unique solution
with the initial conditions p,(0) = 1, and p,(0) =0, for n > a.

The proof gives a method for finding the solution.
Proof. Solving pl,(t) = —Aapa(t) we obtain p,(t) = Ce ?a; but p, = 1 so C = 1 and
pa(t) = e at. Suppose that we have solved for p,_1(t), where n > a. Rearranging
ph(t) = —Aupn(t) = \p_1pn_1(t) and multiplying through by e*»!, we obtain
e)\ntpn(t)/ + )\ne)\ntpn(t) = )\n—le)\"tpn—l(t),
ie.,
(e)mtpn<t))l = /\nfle)\ntpnfl(t»
Integrating and taking into account p,(0) = 0,

t
A Da(t) = At / " pn_1(s) ds,
0
ie.,
t
pn(t) = )\n—le’\"t/ ep,_1(s) ds.
0
0

It can be shown (but not here) that, for any ¢t > 0, >_>° p,(t) = 1 if and only if
5% A1 =oo. (If the ), grow too fast then the process “explodes” at finite time.) To

n=a- "
get an intuitive feel for what is going on, define arrival times T; = min{t : X(¢) =i} for

it=ua,a+1,..., as for the Poisson process, and interarrival times S; = T; — T;_1. Then
Fryy(t) = P(Tus <) = BX() > ) = 1~ P(X(H) = a) = 1 = py(t) = 1 — e,
and, differentiating,

—Aat
fTa+1 = )\ae “ )
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which is the pdf of the exponential function with parameter A\,. Thus Sg+1 = Tg41 ~
Exp()Ag). Continuing as in Theorem 2.5, we see in general that S; ~ Exp(\;_1) for all

i > a. Thus - . .
E(E:SO::E:EQQZE:;.

i=a+1 i=a+1
So if Y /\z_ < 00, with probability 1 the population will become infinite at finite
time.

2.3. Birth-death processes. A birth-death process with birth parameters Mg, A1, Aa, . ..
and death parameters py,po,... is a continuous-time process X(t) on state space N
satisfying the conditions

e The probabilities
pij(t) =P(X(s+1t) =7 | X(s) =)

are independent of s, and of the process up to time s.

e For h > 0,
Aih 4+ o(h), if7>0and j =14+ 1;
pih 4+ o(h), ifi>1land j=1i—1;
pij(h) = ¢ 1— N+ pi)h+o(h), ifi>1andj=q;
1— Xoh + o(h), if i = j = 0;
o(h), otherwise.
Also,

1, ifi=y;
(0) =
pi5(0) {O, otherwise.

Theorem 2.9 (Chapman-Kolmogorov relations). For all s,t >0 and i,j € N,
pzy s+ t szk: pk]

Proof. Condition on X (s), as for the discrete case (Theorem 1.2). O

We can use Theorem 2.9 to derive differential equations for p;;(t). For j > 1,

pl] t"’ h szk Pk]

= Pmel( ) (Nj—1h) +pij () (1 = (Aj + pg)h) + pij+1(t) (j1h) + o(h).

Rearranging,
pij(t +h) — pi;(¢ o(h
il })L it) _ Aj—1Pig—1(t) = (Nj + 1) pig (8) + pja pija (E) + %
So
Pii(t) = N1 i1 (t) — (N 4 pg) pij(t) + pjr1 pijea(t) (for j > 1),

and
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Pio(t) = —Xopio(t) + w1 pir (t).

The special case j = 0 arises because there is no possibility of a death. These are the
forward equations.
Similarly, for i > 1

pii(t+h) = pin(h)pr;(t)
k=0

= pihpi-1,5(t) + (1 — (N + pi)h) pij(t) + Aihpiy1(t) + o(h).

Rearranging,
pii(t+h) — pi(t o(h
i( })Z i) _ i Pi—1,5(t) — (Ni + i) pi(t) + Xi pi1,5(t) + T)
So
Pii(t) = pipio1,5(t) — (N + ) pij(t) + Nipig(t) (for i > 1),
and

Poj(t) = —Xopoj(t) + Ao pi;(t).
These are the backwards equations.
Theorem 2.10. Suppose Ao, A\1,... > 0 and pi, p2,... > 0. There exists a probability
vector w = (wg, w1, ws, ...) such that

(1) pij(t) = wj as t — oo, for every i,j € N.
(2) Either (a) w; =0 for all j, or (b) 3°72yw; =1 and w is the limiting distribution
of X(t).

(3) If we are in case 2(b) then w is the unique equilibrium distribution, i.e., the
solution to wj =Y. w;p;j(t).

Proof. Omitted. O

Letting t — oo in the backwards equations,
tl_iglop;j(t) = pyw; — (N + pi)w; + Mw; =0, for i > 1, and

lim p{)j(t) = —)\owj + )\o’wj =0.

t—00
Now consider the forward equations, and let ¢ — oo:

0=X_1wj—1 — (A\j + pj)wj + pjr1wjp1, and
0= —Xowo + piws.
Lemma 2.11. These equations have the unique solution (given wg)
oAt A

w; = ——————— .
H1p2 - - [
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Proof. To see this use induction on j. The base case j = 1 follows from 0 = Agwg + pyws .
Now suppose j > 1, and we know the result for w;_1,w;. Then
pi1wien = (A + pgwj = Aj—1wj—1
VS VIR bVS VS Y BVS VIS Aot - s
_ AoM ]w0+01 ]1w0_01 jlwozol J
IGYERR M2 - e -1 M2 - - -1 IGYERR

wo.

So
PYPSREEDY
Wiyl = —————— —
Hpe2 - - - g1
O

2.4. Queueing systems. Customers wait in a queue to be served by a certain number
of servers. Denote by Q(t) the number of customers at time ¢. We assume Q(0) = 0. In
this module we assume:

e If the nth customer arrives at time 7T;,, then the interarrival times S,, = T,, —T;,—1
are independent and identically distributed.
e Service is first-come, first-served, with a single queue.
e Service times are independent, identically distributed r.v’s.
A queue is thus described by a triple A/B/s, where A describes the arrivals distribution,
B the service time distribution, and s is the number of servers. Typically, A, B are:
e M(A) (memoryless or Markovian), i.e., following an Exp(A) distribution. (If
A = M () the arrivals form a Poisson process of rate \.)
e D(d) (deterministic), i.e., taking value d with probability 1.
e (@ (general), i.e., some fixed but unspecified distribution.

2.4.1. M(N\)/M(p)/1 queue. In this case, interarrival times are Exp(\), service times
are Exp(p) and there is one server.

We claim that, for a M (X\)/M(u)/1 queue, Q(t) is a birth-death process with A, = A
for all n > 0, and p, = p for all n > 1. As usual, we consider what happens in a (short)
time interval (¢,¢ + hj.

e P (one arrival in (¢,t + h]) = Ah + o(h). (Arrivals form a Poisson process of
rate \.)

e P (service is completed in (¢, ¢+ h]) = 1 —e " = uh + o(h), assuming Q(t) > 1.
(Service time is Exp(u).)

The probability of more than one arrival/service-end in (¢,¢ + h| is o(h). So, for n > 1,
P(Q(t+h)=n+1]|Q(t) =n) = Ah(1 — ph)+ o(h)
= M+ o(h),
P(QUt+h) = n | Q) =) = (1— AB)(1 — uh) + o(h)
=1—(A+ph+o(h),
P(Qt+h)=n—1|Q(t) =n)=(1— An)uh+ o(h)
= ph+o(h).
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Also,
P(Q(t+h)=1|Q(t) =0)=Ah+o(h),
P(Q(t+h)=0|Q(t)=0)=1—Ah+o(h).
So we do have a birth-death process with the specified parameters.
We saw earlier that po;(t) = P(Q(t) = j) — w; as t — oo, where
AOAL - - )\j,l
H1p2 - - - g
In this case, w; = (A/u)?wo, for j > 0. For a limiting distribution we need dosowj =1,

ie.,
oo .
A\J
wd () =
i=o M
If A > p then the sum does not converge and we do not have a limiting distribution.
(The expected length of the queue will tend to infinity with time.) If A < p then the

geometric series converges to u/(u— A), and hence wg =1 — A\/p. In this case there is a
limiting distribution given by

wo, ast— oo.

BQU =) »w=(1-2)(5)

w/ \p
The limiting distribution of Q(¢) is essentially geometric; specifically Q(¢)+1 ~ Geom(1—
A/p). At equilibrium, letting 0 = A/ u,

2.4.2. M(N)/M(p)/s queue, s > 1. If k servers are operating at time ¢ then the proba-
bility that one becomes available in time interval (¢,¢ + h] is

k(i) (1 — uh)*~! + o(h) = kph + o(h),

and the probability that more than one becomes available is o(h). The situation with
arrivals is as with the M(X)/M (u)/1 queue. Arguing as before,

P(Qt+h)=n+1|Q(t) =n) =M+ o(h),
P(Q(t+h)=n—1|Q(t) =n) =min{n, s} uh + o(h),
P(Q(t+h)=n]|Q()=n)=1—(A+min{n,s}tu)h + o(h).
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So we see that Q(t) is a birth-death process with A\, = A for all k¥ > 0, and

_ Jsp, fork=>s;
Hk = kp, for 0 <k <s.

So P(Q(t) = j) = wj, where

N A\i 1 . .
,711)0:(—) f'w(), 1f0§]<5;
AoA1 - Ajo1 1(2p) -+ (ip) n/ !
wj = ———————wp = ,
P2 - - - N (A)jss if j >
- wo=\—) —wp, 1I)j S
p(2p) - -+ (sp) x (sp)I=* ps/ s

For (wp, w1, ws,...) to be a probability distribution we need

o0 s—1 . 0 .
(4) > wy= Z(i)];’+zvz(:s)] wo = 1.
J=0 J=0 j=s

So a limiting distribution exists exactly when the geometric series above converges, i.e.,
when o = A/sp < 1. The parameter o is the traffic intensity.

In principle, for any s, we can solve (4) for wp, and hence determine wy,ws,.... In
practice, the working would get a little complicated for large s. Here we just look at
s =2 (i.e., the case of two servers); see Exercise Sheet 9 for the case s = 3.

2.4.3. M(N\)/M(u)/2 queue. In this case, \y = A for all k, uy = p, and py = 2u, for all
k > 2. Then, for all j > 1,

AQAT - A AN\ )
wy = = 1w0=2(*> wo = 2¢’wo,
M2 - - - g 2u

where ¢ = \/2u. A limiting distribution exists when ¢ < 1. We require Z;ﬁo w; =1,
ie.,

00
: 2 1
[1—}-22@7}100:[14— Q:|w0_ +Qw0:1,
j=1

1—p T 1-0p
and hence
1-p
wy = ——.
T 11
So
1_
— if j = 0;
1+0
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At equilibrium,

2.4.4. M(X)/M(u)/oo queue. (Not physically reasonable, but might be a good approx-
imation for large s.) We have

A=A, for k> 0;
wi = kup, for k> 1.

Thus,
N

e

Wy

For a limiting distribution, we require Z]o'io wj =1, ie.,
o0 .
1 /7A\J
AN
So wp = e~ and there is always a limiting distribution:

P(Q(t) = j) = w; = ew]ﬁ(z)?

In other words, Q(t) ~ Po(A/u) at equilibrium. The expected number of customers in
the system is thus E(Q(t)) = A/pu.
The queues we studied above (M (X\)/M(p)/s and M (X)/M (p)/o0) are the only ones

that can be modelled as birth-death processes. But some further examples can be treated
using other ideas.

2.4.5. M(\)/D(d)/oo queue. Suppose that ¢ > d. The customers who are being pro-
cessed at time ¢ are the ones who arrived in the time interval (¢t — d,t]. (Compare this
with the shop with Poisson arrivals in the coursework.) Thus

M)

P(Q(t) = j) =P (j arrivals in (t — d,t]) = e_)‘dg;

J!
in other words, Q(t) ~ Po(Ad). (This is an exact result, not just a description of what
happens in the limit.)
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2.4.6. M(N)/G /oo queue. The distribution of service times is ), where ) is an arbitrary
distribution with finite expectation. Let A(t) be the number of arrivals in (0,¢]. By the
Law of Total Probability
(5) P(Q(t) =m) =Y P(Q() =m| A(t) = n)P(A(t) = n).

n=m
From earlier work on the Poisson process, we know that, conditioned on A(t) = n, the
n arrivals in the interval (0,t] are distributed as n independent, Uniform(0, ¢, random
variables. Consider one of these arrivals. The probability that it is still present at time ¢
isp=P({U+Y >t), where U ~ Uniform(0,¢] and Y ~ Y, and U and Y are independent.
The probability that m of the n arrivals are still being processed at time ¢ is distributed
binomially, with success probability p, thus

P(Q(t) = m | A(t) = n) = (j;)pmu —pm,

Also, since the arrivals form a Poisson process, A(t) ~ Po(At), so that

(A"
P(A(t) =n)=e o
Substituting the above two expressions in (5),
= /n g (A"
P _ _ m(1 _ \n—m —At
@O =m =Y (1) -pr e
n=m
PN s A=) )
T € Z: (n —m)!
n=m
_ p" ()™ oM (1-p)At
m)!
_ e—p)\t (p)‘t)m
N m)!

Equivalently, Q(t) ~ Po(pAt).
We still need to determine p =P(U +Y > t).

p=PY >t-1U)

‘1
:/ —PY >t—u)du
ot

1 t
—/P(Y>s)ds
t Jo

Now, E(Y) = [;°(1 — Fy(s))ds = [;°P(Y > s)ds, so pt — E(Y) as t — co. Thus,
the limiting distribution for Q(¢) is Po(AE(Y")). Note that this agrees with our earlier
results for M (\)/M () /oo (where E(Y) = p~1) and M()\)/D(d)/oc (where E(Y) = d).



