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2. Continuous-time stochastic processes

As before we have a collection of r.v’s, {X(t) : t 2 T}. but now we take T = R�0 =
[0,1). In our examples, X(t) will always take on integer variables (i.e., the state space
will be a subset of Z).

2.1. The Poisson process.

Definition 2.1. A continuous-time stochastic process X(t) us a Poisson process of rate
� (or intensity �) if

P1. X(0) = 0.
P2. For all s � 0, t > 0, X(s+ t)�X(s) ⇠ Po(�t).
P3. If 0  t1 < t2 < · · · < tn, then X(t2)�X(t1), X(t3)�X(t2), . . . , X(tn)�X(tn�1)

are mutually independent r.v’s.

How might this process arise? suppose we want to count “events” occurring in (0,1).
Let N(t) denote the number of events in (0, t]. (Note that N(0) = 0.) Suppose that

I1. If t > s, the number N(t)�N(s) of events in time interval (s, t] is independent
of the times of events during (0, s].

I2. Events are “rare” in the sense that

P(N(t+ h) = n+ r | N(t) = n) =

8
>>><

>>>:

0, if r < 0;

1� �h+ o(h), if r = 0;

�h+ o(h), if r = 1;

o(h), if r > 1.

(The notation o(h) stands for a function f(x) such that f(h)/h ! 0 as h ! 0.)

Theorem 2.1. The above conditions (1) and (2) imply that N(t) is a Poisson process
of rate �.

Proof. Property P1 is immediate and P3 is straightforward, so we concentrate on P2.
Let pk(t) = P(N(t) = k). Our goal is to show that pk(t) = e

��t(�t)k/k! for all k,
which will imply that X(t) ⇠ Po(�t). As the process defined by (1) and (2) is time-
homogeneous, it will follow that X(s+ t)�X(s) ⇠ X(t)�X(0) ⇠ Po(�t). So we’ll be
done if we can show that pk(t) is as given above.

Let’s consider how pk changes in a small interval [t, t+ h]:

pk(t+ h) = P(N(t+ h) = k)

=
kX

j=0

P(N(t) = j) P(N(t+ h) = k | N(t) = j) (Law of Total Probability)

=
kX

j=0

pj(t) P(N(t+ h) = k | N(t) = j)

=

(
pk(t)(1� �h+ o(h)), if k = 0;

pk�1(t)(�h+ o(h)) + pk(t)(1� �h+ o(h)) + o(h), if k � 1.
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So

p0(t+ h) = p0(t)� �h p0(t) + o(h), and

pk(t+ h) = �h pk�1(t) + pk(t)� �h pk(t) + o(h), for k � 1.

I.e.,

p0(t+ h)� p0(t)

h

= �� p0(t) +
o(h)

h

, and

pk(t+ h)� pk(t)

h

= � pk�1(t)� � pk(t) +
o(h)

h

, for k � 1.

Letting h ! 0,

p

0
0(t) = �� p0(t), and

p

0
k(t) = � pk�1(t)� � pk(t), for k � 1.

We can solve these equations, one at a time, for p0, p1, p2, . . .. (Formally, we are using
induction on k.) First, p00(t) = �� p0(t), so p0(t) = ce

��t for some c. But p0(0) = 1, so
c = 1 and

(2) p0(t) = e

��t
.

Now to k = 1. We have p

0
1(t) = � p0(t) � � p1(t), i.e., p

0
1(t) = �e

��t � � p1(t) or,
rearranging,

e

�t
p

0
1(t) + �e

�t
p1(t) = �

Noting that the l.h.s. of this equation is the derivative of a product, we may write
(p1(t)e�t)0 = � and, by integration, p1(t)e�t = �t+ c. But p1(t) = 0, so c = 0 and

p1(t) = �te

��t
.

Continuing to the general case, suppose we know that pk�1(t) = e

��t(�t)k�1
/(k� 1)!.

We saw earlier that p0k(t) = � pk�1(t)� � pk(t), so that

e

�t
p

0
k(t) + �e

�t
pk(t) =

�

k
t

k�1

(k � 1)!
.

Again, noticing that the l.h.s. is the derivative of a product, we arrive at

(pk(t)e
�t)0 =

�

k
t

k�1

(k � 1)!
.

By integration, pk(t)e�t = �

k
t

k
/k! + c. But pk(t) = 0, so c = 0 and

(3) pk(t) = e

��t (�t)
k

k!
.

From (2) and (3) we see that N(t) has Poisson distribution with parameter �t, as re-
quired. ⇤
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2.1.1. Superposition and thinning. Suppose X(t) and Y (t) are independent Poisson pro-
cesses. The process Z(t) = X(t)+Y (t) is the superposition of X(t) and Y (t), and counts
the totality of X-events and Y -events.

Lemma 2.2. Let X(t) and Y (t) be independent Poisson processes with rates � and µ.
The stochastic process Z(t) = X(t) + Y (t) is a Poisson process with rate �+ µ.

Proof. In time interval (t, t + h] there is an X-event with probability �h + o(h) and a
Y -event with probability µh+ o(h). Thus

P
�
Z(t+ h)� Z(t) = r

�
=

8
><

>:

1� (�+ µ)h+ o(h), if r = 0;

(�+ µ)h+ o(h), if r = 1;

o(h), otherwise.

Comparing with the “infinitesimal description” of a Poisson process, we see that Z(t) is
a Poisson process of rate �+ µ. ⇤

Let X(t) be a Poisson process of rate �, and p 2 (0, 1]. Consider the sequence of events
associated with X(t). Suppose that each event independently survives with probability p

and is lost with probability 1 � p. Denote by b
X(t) the thinned process defined by the

surviving events.

Lemma 2.3. Let X(t) be a Poisson processes with rate �. The stochastic process b
X(t)

defined by the thinning procedure described above is a Poisson process with rate p�.

Proof. In time interval (t, t + h] there is an event with probability �h + o(h) and this
event survives with probability p. Thus

P
� b
X(t+ h)� b

X(t) = r

�
=

8
><

>:

1� p�h+ o(h), if r = 0;

p�h+ o(h), if r = 1;

o(h), otherwise.

Comparing with the infinitesimal description of a Poisson process, we see that b
X(t) is a

Poisson process of rate p�. ⇤
2.1.2. Random variables associated with the Poisson process. Let Ti = inf{t : X(t) = i}
be the time of occurrence of the ith event. The Ti are called arrival times (or waiting
times). By convention, T0 = 0. Let Si = Ti � Ti�1, for i = 1, 2, . . ., be the time between
the (i� 1st and ith arrival. The Si are called interarrival times.

Consider T1 (= S1). We have

P(T1  t) = P(X(t) � 1)

= 1� P(X(t) = 0)

= 1� e

��t
,

since the number of arrivals in (0, t] is distributed as Po(�t). So the cumulative distri-
bution function (cdf) of T1 is FT1(t) = 1� e

��t. Di↵erentiating, the probability density
function (pdf) of T1 is fT1 = �e

��t. Thus T1 ⇠ Exp(�).
Recall that the lack of memory property of the exponential distribution implies

P(T1 > t+ s | T1 > s) = P(T1 > t),
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which agrees with the lack of memory of the Poisson process.

Theorem 2.4. For n � 1, Tn has the Gamma distribution (see MTH 5121 Probability
Models), which has pdf

fTn(t) =
�

n
t

n�1

(n� 1)!
e

��t
.

Proof. We’ll treat the special case n = 2. (The case n = 1 was dealt with above.) The
general case is left as an exercise. By analogy with the calculation above for T1,

FT2(t) = P(T2  t) = P(X(t) � 2)

= 1� P(X(t) = 0)� P(X(t) = 1)

= 1� e

��t � �te

��t
.

Di↵erentiating,

fT2(t) = �e

��t � �e

��t + �

2
te

��t

= �

2
te

��t
,

as required. ⇤

Theorem 2.5. S1, S2, . . . are independent r.v’s each with distribution Exp(�).

Sketch of Proof. For a fixed time s,

P((time to next arrival after s)  t) = 1� P(no arrival in (s, s+ t])

= 1� e

��t
.

Similarly,

P(Sn  t) = 1� P(no arrival in (Tn�1, Tn�1 + t])

= 1� e

��t
,

independently of S1, S2, . . . , Sn�1. (This is not entirely rigorous, as (Tn�1, Tn�1 + t] is
not a fixed interval; its endpoints are r.v’s. The fix is rather technical and beyond the
scope of the module.) ⇤

2.1.3. Conditioning on X(t) = n. If we know that X(t) = n (i.e., there are n events in
(0, t]), what can we say about how they occur in (0, t]?

Theorem 2.6. If 0  u  t and 0  k  n then

P(X(u) = k | X(t) = n) =

✓
n

k

◆⇣
u

t

⌘k⇣
1� u

t

⌘n�k
.

In other words, the conditional distribution is Bin(n, ut ) regardless of �.
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Proof.

P(X(u) = k | X(t) = n) =
P(X(u) = k,X(t) = n)

P(X(t) = n)

=
P(X(u)�X(0) = k)P(X(t)�X(u) = n� k)

P(X(t)�X(0) = n)

=

⇥
e

��u(�u)k/k!
⇤
⇥
⇥
e

��(t�u)(�(t� u))n�k
/(n� k)!

⇤

e

��t(�t)n/n!

=
(�u)k(�(t� u))n�k

n!

(�t)n k!(n� k)!

=

✓
n

k

◆
u

k(t� u)n�k

t

n

=

✓
n

k

◆⇣
u

t

⌘k⇣
1� u

t

⌘n�k
.

⇤

One consequence is that

P(T1  u | X(t) = 1) = P(X(u) = 1 | X(t) = 1) =
u

t

.

In other words, conditioned on there being exactly one event in the interval (0, t], that
event is distributed uniformly in the interval. More generally

Theorem 2.7. Let T1, T2, . . . be the arrival times of a Poisson process of rate �, and f

be a symmetric function on n variables. Then

E(f(T1, T2, . . . , Tn) | X(t) = n) = E(f(U1, . . . , Un)),

where Ui are independent r.v’s, uniform on [0, t].

2.2. Birth processes. A birth process with parameters �0,�1,�2, . . . is a continuous-
time process X(t) satisfying

• X(0) � 0.
•

P(X(t+ h) = n+ r | X(t) = n) =

8
>>><

>>>:

0, if r < 0;

1� �nh+ o(h), if r = 0;

�nh+ o(h), if r = 1;

o(h), if r > 1.

• If s < t then X(t) � X(s) conditioned on X(s) is independent of the process
prior to s.
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As with the Poisson process we can find di↵erential equations defining the process.
Let pn(t) = P(X(t) = n) and suppose X(0) = a. Then for n � a,

pn(t+ h) =
nX

k=0

P(X(t+ h) = n | X(t) = k)P(X(t) = k)

= P(X(t+ h) = n | X(t) = n)P(X(t) = n)

+ P(X(t+ h) = n | X(t) = n� 1)P(X(t) = n� 1) + o(h)

= (1� �nh+ o(h))pn(t) + (�n�1h+ o(h))pn�1(t) + o(h).

So
pn(t+ h)� pn(t)

h

= ��npn(t) + �n�1pn�1(t) +
o(h)

h

.

Letting h ! 0,
p

0
n(t) = ��npn(t) + �n�1pn�1(t),

where for n < a we let pn(t) = 0. The initial conditions are pa(0) = 1 and pn(0) = 0 for
n > a.

Theorem 2.8. If X(t) is the birth process with X(0) = a and parameters �a,�a+1, . . .,
then the equations p

0
n(t) = ��npn(t) + �n�1pn�1(t) for n � a have a unique solution

with the initial conditions pa(0) = 1, and pn(0) = 0, for n > a.

The proof gives a method for finding the solution.

Proof. Solving p

0
a(t) = ��apa(t) we obtain pa(t) = Ce

��at; but pa = 1 so C = 1 and
pa(t) = e

��at. Suppose that we have solved for pn�1(t), where n > a. Rearranging
p

0
n(t) = ��npn(t) = �n�1pn�1(t) and multiplying through by e

�nt, we obtain

e

�nt
pn(t)

0 + �ne
�nt

pn(t) = �n�1e
�nt

pn�1(t),

i.e.,
(e�nt

pn(t))
0 = �n�1e

�nt
pn�1(t).

Integrating and taking into account pn(0) = 0,

e

�nt
pn(t) = �n�1

Z t

0
e

�ns
pn�1(s) ds,

i.e.,

pn(t) = �n�1e
��nt

Z t

0
e

�ns
pn�1(s) ds.

⇤
It can be shown (but not here) that, for any t > 0,

P1
n=a pn(t) = 1 if and only ifP1

n=a �
�1
i = 1. (If the �n grow too fast then the process “explodes” at finite time.) To

get an intuitive feel for what is going on, define arrival times Ti = min{t : X(t) = i} for
i = a, a+ 1, . . ., as for the Poisson process, and interarrival times Si = Ti � Ti�1. Then

FTa+1(t) = P(Ta+1  t) = P(X(t) > a) = 1� P(X(t) = a) = 1� pa(t) = 1� e

��at
,

and, di↵erentiating,
fTa+1 = �ae

��at
,
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which is the pdf of the exponential function with parameter �a. Thus Sa+1 = Ta+1 ⇠
Exp(�a). Continuing as in Theorem 2.5, we see in general that Si ⇠ Exp(�i�1) for all
i > a. Thus

E
✓ 1X

i=a+1

Si

◆
=

1X

i=a+1

E(Si) =
1X

i=a

1

�i
.

So if
P1

n=a �
�1
i < 1, with probability 1 the population will become infinite at finite

time.

2.3. Birth-death processes. A birth-death process with birth parameters �0,�1,�2, . . .

and death parameters µ1, µ2, . . . is a continuous-time process X(t) on state space N
satisfying the conditions

• The probabilities

pij(t) = P(X(s+ t) = j | X(s) = i)

are independent of s, and of the process up to time s.
• For h > 0,

pij(h) =

8
>>>>>><

>>>>>>:

�ih+ o(h), if i � 0 and j = i+ 1;

µih+ o(h), if i � 1 and j = i� 1;

1� (�i + µi)h+ o(h), if i � 1 and j = i;

1� �0h+ o(h), if i = j = 0;

o(h), otherwise.

Also,

pij(0) =

(
1, if i = j;

0, otherwise.

Theorem 2.9 (Chapman-Kolmogorov relations). For all s, t � 0 and i, j 2 N,

pij(s+ t) =
1X

k=0

pik(s)pkj(t).

Proof. Condition on X(s), as for the discrete case (Theorem 1.2). ⇤
We can use Theorem 2.9 to derive di↵erential equations for pij(t). For j � 1,

pij(t+ h) =
1X

k=0

pik(t)pkj(h)

= pi,j�1(t) (�j�1h) + pij(t) (1� (�j + µj)h) + pi,j+1(t) (µj+1h) + o(h).

Rearranging,

pij(t+ h)� pij(t)

h

= �j�1 pi,j�1(t)� (�j + µj) pij(t) + µj+1 pi,j+1(t) +
o(h)

h

.

So

p

0
ij(t) = �j�1 pi,j�1(t)� (�j + µj) pij(t) + µj+1 pi,j+1(t) (for j � 1),

and
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p

0
i0(t) = ��0 pi0(t) + µ1 pi1(t).

The special case j = 0 arises because there is no possibility of a death. These are the
forward equations.

Similarly, for i � 1

pij(t+ h) =
1X

k=0

pik(h)pkj(t)

= µih pi�1,j(t) + (1� (�i + µi)h) pij(t) + �ih pi+1,j(t) + o(h).

Rearranging,

pij(t+ h)� pij(t)

h

= µi pi�1,j(t)� (�i + µi) pij(t) + �i pi+1,j(t) +
o(h)

h

.

So

p

0
ij(t) = µi pi�1,j(t)� (�i + µi) pij(t) + �i pi+1,j(t) (for i � 1),

and

p

0
0j(t) = ��0 p0j(t) + �0 p1j(t).

These are the backwards equations.

Theorem 2.10. Suppose �0,�1, . . . > 0 and µ1, µ2, . . . > 0. There exists a probability
vector w = (w0, w1, w2, . . .) such that

(1) pij(t) ! wj as t ! 1, for every i, j 2 N.
(2) Either (a) wj = 0 for all j, or (b)

P1
j=0wj = 1 and w is the limiting distribution

of X(t).
(3) If we are in case 2(b) then w is the unique equilibrium distribution, i.e., the

solution to wj =
P

iwipij(t).

Proof. Omitted. ⇤

Letting t ! 1 in the backwards equations,

lim
t!1

p

0
ij(t) = µiwj � (�i + µi)wj + �iwj = 0, for i � 1, and

lim
t!1

p

0
0j(t) = ��0wj + �0wj = 0.

Now consider the forward equations, and let t ! 1:

0 = �j�1wj�1 � (�j + µj)wj + µj+1wj+1, and

0 = ��0w0 + µ1w1.

Lemma 2.11. These equations have the unique solution (given w0)

wj =
�0�1 · · ·�j�1

µ1µ2 · · ·µj
w0.
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Proof. To see this use induction on j. The base case j = 1 follows from 0 = �0w0+µ1w1.
Now suppose j � 1, and we know the result for wj�1, wj . Then

µj+1wj+1 = (�j + µj)wj � �j�1wj�1

=
�0�1 · · ·�j

µ1µ2 · · ·µj
w0 +

�0�1 · · ·�j�1

µ1µ2 · · ·µj�1
w0 �

�0�1 · · ·�j�1

µ1µ2 · · ·µj�1
w0 =

�0�1 · · ·�j

µ1µ2 · · ·µj
w0.

So

wj+1 =
�0�1 · · ·�j

µ1µ2 · · ·µj+1
w0.

⇤

2.4. Queueing systems. Customers wait in a queue to be served by a certain number
of servers. Denote by Q(t) the number of customers at time t. We assume Q(0) = 0. In
this module we assume:

• If the nth customer arrives at time Tn, then the interarrival times Sn = Tn�Tn�1

are independent and identically distributed.
• Service is first-come, first-served, with a single queue.
• Service times are independent, identically distributed r.v’s.

A queue is thus described by a triple A/B/s, where A describes the arrivals distribution,
B the service time distribution, and s is the number of servers. Typically, A, B are:

• M(�) (memoryless or Markovian), i.e., following an Exp(�) distribution. (If
A = M(�) the arrivals form a Poisson process of rate �.)

• D(d) (deterministic), i.e., taking value d with probability 1.
• G (general), i.e., some fixed but unspecified distribution.

2.4.1. M(�)/M(µ)/1 queue. In this case, interarrival times are Exp(�), service times
are Exp(µ) and there is one server.

We claim that, for a M(�)/M(µ)/1 queue, Q(t) is a birth-death process with �n = �

for all n � 0, and µn = µ for all n � 1. As usual, we consider what happens in a (short)
time interval (t, t+ h].

• P
�
one arrival in (t, t + h]

�
= �h + o(h). (Arrivals form a Poisson process of

rate �.)
• P

�
service is completed in (t, t+ h]

�
= 1� e

�µh = µh+ o(h), assuming Q(t) > 1.
(Service time is Exp(µ).)

The probability of more than one arrival/service-end in (t, t+ h] is o(h). So, for n � 1,

P(Q(t+ h) = n+ 1 | Q(t) = n) = �h(1� µh) + o(h)

= �h+ o(h),

P(Q(t+ h) = n | Q(t) = n) = (1� �h)(1� µh) + o(h)

= 1� (�+ µ)h+ o(h),

P(Q(t+ h) = n� 1 | Q(t) = n) = (1� �h)µh+ o(h)

= µh+ o(h).
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Also,

P(Q(t+ h) = 1 | Q(t) = 0) = �h+ o(h),

P(Q(t+ h) = 0 | Q(t) = 0) = 1� �h+ o(h).

So we do have a birth-death process with the specified parameters.
We saw earlier that p0j(t) = P(Q(t) = j) ! wj as t ! 1, where

�0�1 . . .�j�1

µ1µ2 . . . µj
w0, as t ! 1.

In this case, wj = (�/µ)jw0, for j � 0. For a limiting distribution we need
P1

j=0wj = 1,
i.e.,

w0

1X

j=0

⇣
�

µ

⌘j
= 1.

If � � µ then the sum does not converge and we do not have a limiting distribution.
(The expected length of the queue will tend to infinity with time.) If � < µ then the
geometric series converges to µ/(µ� �), and hence w0 = 1� �/µ. In this case there is a
limiting distribution given by

P(Q(t) = j) ! wj =
⇣
1� �

µ

⌘⇣
�

µ

⌘j
.

The limiting distribution ofQ(t) is essentially geometric; specificallyQ(t)+1 ⇠ Geom(1�
�/µ). At equilibrium, letting % = �/µ,

E(Q(t)) =
1X

j=1

wjj

=
1X

j=1

%

j(1� %)j

= %

1X

j=1

%

j�1(1� %)j

=
%

1� %

.

2.4.2. M(�)/M(µ)/s queue, s > 1. If k servers are operating at time t then the proba-
bility that one becomes available in time interval (t, t+ h] is

k(µh)(1� µh)k�1 + o(h) = kµh+ o(h),

and the probability that more than one becomes available is o(h). The situation with
arrivals is as with the M(�)/M(µ)/1 queue. Arguing as before,

P(Q(t+ h) = n+ 1 | Q(t) = n) = �h+ o(h),

P(Q(t+ h) = n� 1 | Q(t) = n) = min{n, s}µh+ o(h),

P(Q(t+ h) = n | Q(t) = n) = 1� (�+min{n, s}µ)h+ o(h).
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So we see that Q(t) is a birth-death process with �k = � for all k � 0, and

µk =

(
sµ, for k � s;

kµ, for 0  k < s.

So P(Q(t) = j) ! wj , where

wj =
�0�1 . . .�j�1

µ1µ2 . . . µj
w0 =

8
>>><

>>>:

�

j

µ(2µ) · · · (jµ) w0 =
⇣
�

µ

⌘j 1

j!
w0, if 0  j < s;

�

j

µ(2µ) · · · (sµ)⇥ (sµ)j�s
w0 =

⇣
�

µs

⌘j
s

s

s!
w0, if j � s.

For (w0, w1, w2, . . .) to be a probability distribution we need

(4)
1X

j=0

wj =

2

4
s�1X

j=0

⇣
�

µ

⌘j 1

j!
+

s

s

s!

1X

j=s

⇣
�

µs

⌘j

3

5
w0 = 1.

So a limiting distribution exists exactly when the geometric series above converges, i.e.,
when % = �/sµ < 1. The parameter % is the tra�c intensity.

In principle, for any s, we can solve (4) for w0, and hence determine w1, w2, . . . . In
practice, the working would get a little complicated for large s. Here we just look at
s = 2 (i.e., the case of two servers); see Exercise Sheet 9 for the case s = 3.

2.4.3. M(�)/M(µ)/2 queue. In this case, �k = � for all k, µ1 = µ, and µk = 2µ, for all
k � 2. Then, for all j � 1,

wj =
�0�1 . . .�j�1

µ1µ2 . . . µj
w0 = 2

⇣
�

2µ

⌘j
w0 = 2%jw0,

where % = �/2µ. A limiting distribution exists when % < 1. We require
P1

j=0wj = 1,
i.e.,


1 + 2

1X

j=1

%

j

�
w0 =


1 +

2%

1� %

�
w0 =

1 + %

1� %

w0 = 1,

and hence

w0 =
1� %

1 + %

.

So

P(Q(t) = j) ! wj =

8
>><

>>:

1� %

1 + %

, if j = 0;

2
⇣1� %

1 + %

⌘
%

j
, if j � 1.
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At equilibrium,

E(Q(t)) =
1X

j=1

2
⇣1� %

1 + %

⌘
%

j
j

=
2%

1 + %

1X

j=1

(1� %)%j�1
j

=
2%

1� %

2
.

2.4.4. M(�)/M(µ)/1 queue. (Not physically reasonable, but might be a good approx-
imation for large s.) We have

�k = �, for k � 0;

µk = kµ, for k � 1.

Thus,

wj =
�

j

j!µj
w0.

For a limiting distribution, we require
P1

j=0wj = 1, i.e.,

w0

1X

j=0

1

j!

⇣
�

µ

⌘j
= 1.

So w0 = e

��/µ and there is always a limiting distribution:

P(Q(t) = j) ! wj = e

��/µ 1

j!

⇣
�

µ

⌘j
.

In other words, Q(t) ⇠ Po(�/µ) at equilibrium. The expected number of customers in
the system is thus E(Q(t)) = �/µ.

The queues we studied above (M(�)/M(µ)/s and M(�)/M(µ)/1) are the only ones
that can be modelled as birth-death processes. But some further examples can be treated
using other ideas.

2.4.5. M(�)/D(d)/1 queue. Suppose that t � d. The customers who are being pro-
cessed at time t are the ones who arrived in the time interval (t � d, t]. (Compare this
with the shop with Poisson arrivals in the coursework.) Thus

P(Q(t) = j) = P
�
j arrivals in (t� d, t]

�
= e

��d (�d)
j

j!
;

in other words, Q(t) ⇠ Po(�d). (This is an exact result, not just a description of what
happens in the limit.)
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2.4.6. M(�)/G/1 queue. The distribution of service times is Y, where Y is an arbitrary
distribution with finite expectation. Let A(t) be the number of arrivals in (0, t]. By the
Law of Total Probability

(5) P(Q(t) = m) =
1X

n=m

P(Q(t) = m | A(t) = n)P(A(t) = n).

From earlier work on the Poisson process, we know that, conditioned on A(t) = n, the
n arrivals in the interval (0, t] are distributed as n independent, Uniform(0, t], random
variables. Consider one of these arrivals. The probability that it is still present at time t
is p = P(U+Y > t), where U ⇠ Uniform(0, t] and Y ⇠ Y, and U and Y are independent.
The probability that m of the n arrivals are still being processed at time t is distributed
binomially, with success probability p, thus

P(Q(t) = m | A(t) = n) =

✓
n

m

◆
p

m(1� p)n�m
.

Also, since the arrivals form a Poisson process, A(t) ⇠ Po(�t), so that

P(A(t) = n) = e

��t (�t)
n

n!
.

Substituting the above two expressions in (5),

P(Q(t) = m) =
1X

n=m

✓
n

m

◆
p

m(1� p)n�m
e

��t (�t)
n

n!

=
p

m(�t)m

m!
e

��t
1X

n=m

(1� p)n�m(�t)n�m

(n�m)!

=
p

m(�t)m

m!
e

��t
e

(1�p)�t

= e

�p�t (p�t)
m

m!
.

Equivalently, Q(t) ⇠ Po(p�t).
We still need to determine p = P(U + Y > t).

p = P(Y > t� U)

=

Z t

0

1

t

P(Y > t� u) du

=
1

t

Z t

0
P(Y > s) ds

Now, E(Y ) =
R1
0 (1 � FY (s)) ds =

R1
0 P(Y > s) ds, so pt ! E(Y ) as t ! 1. Thus,

the limiting distribution for Q(t) is Po(�E(Y )). Note that this agrees with our earlier
results for M(�)/M(µ)/1 (where E(Y ) = µ

�1) and M(�)/D(d)/1 (where E(Y ) = d).


