2. Continuous-time stochastic processes

As before we have a collection of r.v's, $\{X(t): t \in T\}$. but now we take $T=\mathbb{R}_{\geq 0}=$ $[0, \infty)$. In our examples, $X(t)$ will always take on integer variables (i.e., the state space will be a subset of \mathbb{Z}).

2.1. The Poisson process.

Definition 2.1. A continuous-time stochastic process $X(t)$ us a Poisson process of rate λ (or intensity λ) if

P1. $X(0)=0$.
P 2 . For all $s \geq 0, t>0, X(s+t)-X(s) \sim \operatorname{Po}(\lambda t)$.
P3. If $0 \leq t_{1}<t_{2}<\cdots<t_{n}$, then $X\left(t_{2}\right)-X\left(t_{1}\right), X\left(t_{3}\right)-X\left(t_{2}\right), \ldots, X\left(t_{n}\right)-X\left(t_{n-1}\right)$ are mutually independent r.v's.

How might this process arise? suppose we want to count "events" occurring in $(0, \infty)$. Let $N(t)$ denote the number of events in $(0, t]$. (Note that $N(0)=0$.) Suppose that

I1. If $t>s$, the number $N(t)-N(s)$ of events in time interval $(s, t]$ is independent of the times of events during $(0, s]$.
I2. Events are "rare" in the sense that

$$
\mathbb{P}(N(t+h)=n+r \mid N(t)=n)= \begin{cases}0, & \text { if } r<0 \\ 1-\lambda h+o(h), & \text { if } r=0 \\ \lambda h+o(h), & \text { if } r=1 \\ o(h), & \text { if } r>1\end{cases}
$$

(The notation $o(h)$ stands for a function $f(x)$ such that $f(h) / h \rightarrow 0$ as $h \rightarrow 0$.)
Theorem 2.1. The above conditions (1) and (2) imply that $N(t)$ is a Poisson process of rate λ.

Proof. Property P1 is immediate and P3 is straightforward, so we concentrate on P2.
Let $p_{k}(t)=\mathbb{P}(N(t)=k)$. Our goal is to show that $p_{k}(t)=e^{-\lambda t}(\lambda t)^{k} / k$! for all k, which will imply that $X(t) \sim \operatorname{Po}(\lambda t)$. As the process defined by (1) and (2) is timehomogeneous, it will follow that $X(s+t)-X(s) \sim X(t)-X(0) \sim \operatorname{Po}(\lambda t)$. So we'll be done if we can show that $p_{k}(t)$ is as given above.

Let's consider how p_{k} changes in a small interval $[t, t+h]$:

$$
\begin{aligned}
p_{k}(t+h) & =\mathbb{P}(N(t+h)=k) \\
& =\sum_{j=0}^{k} \mathbb{P}(N(t)=j) \mathbb{P}(N(t+h)=k \mid N(t)=j) \quad \text { (Law of Total Probability) } \\
& =\sum_{j=0}^{k} p_{j}(t) \mathbb{P}(N(t+h)=k \mid N(t)=j) \\
& = \begin{cases}p_{k}(t)(1-\lambda h+o(h)), & \text { if } k=0 \\
p_{k-1}(t)(\lambda h+o(h))+p_{k}(t)(1-\lambda h+o(h))+o(h), & \text { if } k \geq 1\end{cases}
\end{aligned}
$$

So

$$
\begin{aligned}
& p_{0}(t+h)=p_{0}(t)-\lambda h p_{0}(t)+o(h), \quad \text { and } \\
& p_{k}(t+h)=\lambda h p_{k-1}(t)+p_{k}(t)-\lambda h p_{k}(t)+o(h), \quad \text { for } k \geq 1 .
\end{aligned}
$$

I.e.,

$$
\begin{aligned}
& \frac{p_{0}(t+h)-p_{0}(t)}{h}=-\lambda p_{0}(t)+\frac{o(h)}{h}, \quad \text { and } \\
& \frac{p_{k}(t+h)-p_{k}(t)}{h}=\lambda p_{k-1}(t)-\lambda p_{k}(t)+\frac{o(h)}{h}, \quad \text { for } k \geq 1
\end{aligned}
$$

Letting $h \rightarrow 0$,

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda p_{0}(t), \quad \text { and } \\
p_{k}^{\prime}(t) & =\lambda p_{k-1}(t)-\lambda p_{k}(t), \quad \text { for } k \geq 1
\end{aligned}
$$

We can solve these equations, one at a time, for $p_{0}, p_{1}, p_{2}, \ldots$. (Formally, we are using induction on k.) First, $p_{0}^{\prime}(t)=-\lambda p_{0}(t)$, so $p_{0}(t)=c e^{-\lambda t}$ for some c. But $p_{0}(0)=1$, so $c=1$ and

$$
\begin{equation*}
p_{0}(t)=e^{-\lambda t} \tag{2}
\end{equation*}
$$

Now to $k=1$. We have $p_{1}^{\prime}(t)=\lambda p_{0}(t)-\lambda p_{1}(t)$, i.e., $p_{1}^{\prime}(t)=\lambda e^{-\lambda t}-\lambda p_{1}(t)$ or, rearranging,

$$
e^{\lambda t} p_{1}^{\prime}(t)+\lambda e^{\lambda t} p_{1}(t)=\lambda
$$

Noting that the l.h.s. of this equation is the derivative of a product, we may write $\left(p_{1}(t) e^{\lambda t}\right)^{\prime}=\lambda$ and, by integration, $p_{1}(t) e^{\lambda t}=\lambda t+c$. But $p_{1}(t)=0$, so $c=0$ and

$$
p_{1}(t)=\lambda t e^{-\lambda t}
$$

Continuing to the general case, suppose we know that $p_{k-1}(t)=e^{-\lambda t}(\lambda t)^{k-1} /(k-1)$!. We saw earlier that $p_{k}^{\prime}(t)=\lambda p_{k-1}(t)-\lambda p_{k}(t)$, so that

$$
e^{\lambda t} p_{k}^{\prime}(t)+\lambda e^{\lambda t} p_{k}(t)=\frac{\lambda^{k} t^{k-1}}{(k-1)!}
$$

Again, noticing that the l.h.s. is the derivative of a product, we arrive at

$$
\left(p_{k}(t) e^{\lambda t}\right)^{\prime}=\frac{\lambda^{k} t^{k-1}}{(k-1)!}
$$

By integration, $p_{k}(t) e^{\lambda t}=\lambda^{k} t^{k} / k!+c$. But $p_{k}(t)=0$, so $c=0$ and

$$
\begin{equation*}
p_{k}(t)=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \tag{3}
\end{equation*}
$$

From (2) and (3) we see that $N(t)$ has Poisson distribution with parameter λt, as required.
2.1.1. Superposition and thinning. Suppose $X(t)$ and $Y(t)$ are independent Poisson processes. The process $Z(t)=X(t)+Y(t)$ is the superposition of $X(t)$ and $Y(t)$, and counts the totality of X-events and Y-events.

Lemma 2.2. Let $X(t)$ and $Y(t)$ be independent Poisson processes with rates λ and μ. The stochastic process $Z(t)=X(t)+Y(t)$ is a Poisson process with rate $\lambda+\mu$.
Proof. In time interval $(t, t+h]$ there is an X-event with probability $\lambda h+o(h)$ and a Y-event with probability $\mu h+o(h)$. Thus

$$
\mathbb{P}(Z(t+h)-Z(t)=r)= \begin{cases}1-(\lambda+\mu) h+o(h), & \text { if } r=0 \\ (\lambda+\mu) h+o(h), & \text { if } r=1 \\ o(h), & \text { otherwise }\end{cases}
$$

Comparing with the "infinitesimal description" of a Poisson process, we see that $Z(t)$ is a Poisson process of rate $\lambda+\mu$.

Let $X(t)$ be a Poisson process of rate λ, and $p \in(0,1]$. Consider the sequence of events associated with $X(t)$. Suppose that each event independently survives with probability p and is lost with probability $1-p$. Denote by $\widehat{X}(t)$ the thinned process defined by the surviving events.
Lemma 2.3. Let $X(t)$ be a Poisson processes with rate λ. The stochastic process $\widehat{X}(t)$ defined by the thinning procedure described above is a Poisson process with rate $p \lambda$.
Proof. In time interval $(t, t+h]$ there is an event with probability $\lambda h+o(h)$ and this event survives with probability p. Thus

$$
\mathbb{P}(\widehat{X}(t+h)-\widehat{X}(t)=r)= \begin{cases}1-p \lambda h+o(h), & \text { if } r=0 \\ p \lambda h+o(h), & \text { if } r=1 \\ o(h), & \text { otherwise }\end{cases}
$$

Comparing with the infinitesimal description of a Poisson process, we see that $\widehat{X}(t)$ is a Poisson process of rate $p \lambda$.
2.1.2. Random variables associated with the Poisson process. Let $T_{i}=\inf \{t: X(t)=i\}$ be the time of occurrence of the i th event. The T_{i} are called arrival times (or waiting times). By convention, $T_{0}=0$. Let $S_{i}=T_{i}-T_{i-1}$, for $i=1,2, \ldots$, be the time between the $\left(i-1\right.$ st and i th arrival. The S_{i} are called interarrival times.

Consider $T_{1}\left(=S_{1}\right)$. We have

$$
\begin{aligned}
\mathbb{P}\left(T_{1} \leq t\right) & =\mathbb{P}(X(t) \geq 1) \\
& =1-\mathbb{P}(X(t)=0) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

since the number of arrivals in $(0, t]$ is distributed as $\operatorname{Po}(\lambda t)$. So the cumulative distribution function (cdf) of T_{1} is $F_{T_{1}}(t)=1-e^{-\lambda t}$. Differentiating, the probability density function (pdf) of T_{1} is $f_{T_{1}}=\lambda e^{-\lambda t}$. Thus $T_{1} \sim \operatorname{Exp}(\lambda)$.

Recall that the lack of memory property of the exponential distribution implies

$$
\mathbb{P}\left(T_{1}>t+s \mid T_{1}>s\right)=\mathbb{P}\left(T_{1}>t\right)
$$

which agrees with the lack of memory of the Poisson process.
Theorem 2.4. For $n \geq 1, T_{n}$ has the Gamma distribution (see MTH 5121 Probability Models), which has pdf

$$
f_{T_{n}}(t)=\frac{\lambda^{n} t^{n-1}}{(n-1)!} e^{-\lambda t}
$$

Proof. We'll treat the special case $n=2$. (The case $n=1$ was dealt with above.) The general case is left as an exercise. By analogy with the calculation above for T_{1},

$$
\begin{aligned}
F_{T_{2}}(t)=\mathbb{P}\left(T_{2} \leq t\right) & =\mathbb{P}(X(t) \geq 2) \\
& =1-\mathbb{P}(X(t)=0)-\mathbb{P}(X(t)=1) \\
& =1-e^{-\lambda t}-\lambda t e^{-\lambda t} .
\end{aligned}
$$

Differentiating,

$$
\begin{aligned}
f_{T_{2}}(t) & =\lambda e^{-\lambda t}-\lambda e^{-\lambda t}+\lambda^{2} t e^{-\lambda t} \\
& =\lambda^{2} t e^{-\lambda t}
\end{aligned}
$$

as required.
Theorem 2.5. S_{1}, S_{2}, \ldots are independent r.v's each with distribution $\operatorname{Exp}(\lambda)$.
Sketch of Proof. For a fixed time s,

$$
\begin{aligned}
\mathbb{P}((\text { time to next arrival after } s) \leq t) & =1-\mathbb{P}(\text { no arrival in }(s, s+t]) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbb{P}\left(S_{n} \leq t\right) & =1-\mathbb{P}\left(\text { no arrival in }\left(T_{n-1}, T_{n-1}+t\right]\right) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

independently of $S_{1}, S_{2}, \ldots, S_{n-1}$. (This is not entirely rigorous, as $\left(T_{n-1}, T_{n-1}+t\right]$ is not a fixed interval; its endpoints are r.v's. The fix is rather technical and beyond the scope of the module.)
2.1.3. Conditioning on $X(t)=n$. If we know that $X(t)=n$ (i.e., there are n events in $(0, t])$, what can we say about how they occur in $(0, t]$?

Theorem 2.6. If $0 \leq u \leq t$ and $0 \leq k \leq n$ then

$$
\mathbb{P}(X(u)=k \mid X(t)=n)=\binom{n}{k}\left(\frac{u}{t}\right)^{k}\left(1-\frac{u}{t}\right)^{n-k}
$$

In other words, the conditional distribution is $\operatorname{Bin}\left(n, \frac{u}{t}\right)$ regardless of λ.

Proof.

$$
\begin{aligned}
\mathbb{P}(X(u)=k \mid X(t)=n) & =\frac{\mathbb{P}(X(u)=k, X(t)=n)}{\mathbb{P}(X(t)=n)} \\
& =\frac{\mathbb{P}(X(u)-X(0)=k) \mathbb{P}(X(t)-X(u)=n-k)}{\mathbb{P}(X(t)-X(0)=n)} \\
& =\frac{\left[e^{-\lambda u}(\lambda u)^{k} / k!\right] \times\left[e^{-\lambda(t-u)}(\lambda(t-u))^{n-k} /(n-k)!\right]}{e^{-\lambda t}(\lambda t)^{n} / n!} \\
& =\frac{(\lambda u)^{k}(\lambda(t-u))^{n-k} n!}{(\lambda t)^{n} k!(n-k)!} \\
& =\binom{n}{k} \frac{u^{k}(t-u)^{n-k}}{t^{n}} \\
& =\binom{n}{k}\left(\frac{u}{t}\right)^{k}\left(1-\frac{u}{t}\right)^{n-k} .
\end{aligned}
$$

One consequence is that

$$
\mathbb{P}\left(T_{1} \leq u \mid X(t)=1\right)=\mathbb{P}(X(u)=1 \mid X(t)=1)=\frac{u}{t}
$$

In other words, conditioned on there being exactly one event in the interval $(0, t]$, that event is distributed uniformly in the interval. More generally

Theorem 2.7. Let T_{1}, T_{2}, \ldots be the arrival times of a Poisson process of rate λ, and f be a symmetric function on n variables. Then

$$
\mathbb{E}\left(f\left(T_{1}, T_{2}, \ldots, T_{n}\right) \mid X(t)=n\right)=\mathbb{E}\left(f\left(U_{1}, \ldots, U_{n}\right)\right)
$$

where U_{i} are independent r.v's, uniform on $[0, t]$.
2.2. Birth processes. A birth process with parameters $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$ is a continuoustime process $X(t)$ satisfying

- $X(0) \geq 0$.

$$
\mathbb{P}(X(t+h)=n+r \mid X(t)=n)= \begin{cases}0, & \text { if } r<0 \\ 1-\lambda_{n} h+o(h), & \text { if } r=0 \\ \lambda_{n} h+o(h), & \text { if } r=1 \\ o(h), & \text { if } r>1\end{cases}
$$

- If $s<t$ then $X(t)-X(s)$ conditioned on $X(s)$ is independent of the process prior to s.

As with the Poisson process we can find differential equations defining the process. Let $p_{n}(t)=\mathbb{P}(X(t)=n)$ and suppose $X(0)=a$. Then for $n \geq a$,

$$
\begin{aligned}
p_{n}(t+h)= & \sum_{k=0}^{n} \mathbb{P}(X(t+h)=n \mid X(t)=k) \mathbb{P}(X(t)=k) \\
= & \mathbb{P}(X(t+h)=n \mid X(t)=n) \mathbb{P}(X(t)=n) \\
& \quad+\mathbb{P}(X(t+h)=n \mid X(t)=n-1) \mathbb{P}(X(t)=n-1)+o(h) \\
= & \left(1-\lambda_{n} h+o(h)\right) p_{n}(t)+\left(\lambda_{n-1} h+o(h)\right) p_{n-1}(t)+o(h) .
\end{aligned}
$$

So

$$
\frac{p_{n}(t+h)-p_{n}(t)}{h}=-\lambda_{n} p_{n}(t)+\lambda_{n-1} p_{n-1}(t)+\frac{o(h)}{h}
$$

Letting $h \rightarrow 0$,

$$
p_{n}^{\prime}(t)=-\lambda_{n} p_{n}(t)+\lambda_{n-1} p_{n-1}(t),
$$

where for $n<a$ we let $p_{n}(t)=0$. The initial conditions are $p_{a}(0)=1$ and $p_{n}(0)=0$ for $n>a$.

Theorem 2.8. If $X(t)$ is the birth process with $X(0)=a$ and parameters $\lambda_{a}, \lambda_{a+1}, \ldots$, then the equations $p_{n}^{\prime}(t)=-\lambda_{n} p_{n}(t)+\lambda_{n-1} p_{n-1}(t)$ for $n \geq a$ have a unique solution with the initial conditions $p_{a}(0)=1$, and $p_{n}(0)=0$, for $n>a$.

The proof gives a method for finding the solution.
Proof. Solving $p_{a}^{\prime}(t)=-\lambda_{a} p_{a}(t)$ we obtain $p_{a}(t)=C e^{-\lambda_{a} t}$; but $p_{a}=1$ so $C=1$ and $p_{a}(t)=e^{-\lambda_{a} t}$. Suppose that we have solved for $p_{n-1}(t)$, where $n>a$. Rearranging $p_{n}^{\prime}(t)=-\lambda_{n} p_{n}(t)=\lambda_{n-1} p_{n-1}(t)$ and multiplying through by $e^{\lambda_{n} t}$, we obtain

$$
e^{\lambda_{n} t} p_{n}(t)^{\prime}+\lambda_{n} e^{\lambda_{n} t} p_{n}(t)=\lambda_{n-1} e^{\lambda_{n} t} p_{n-1}(t),
$$

i.e.,

$$
\left(e^{\lambda_{n} t} p_{n}(t)\right)^{\prime}=\lambda_{n-1} e^{\lambda_{n} t} p_{n-1}(t)
$$

Integrating and taking into account $p_{n}(0)=0$,

$$
e^{\lambda_{n} t} p_{n}(t)=\lambda_{n-1} \int_{0}^{t} e^{\lambda_{n} s} p_{n-1}(s) d s
$$

i.e.,

$$
p_{n}(t)=\lambda_{n-1} e^{-\lambda_{n} t} \int_{0}^{t} e^{\lambda_{n} s} p_{n-1}(s) d s
$$

It can be shown (but not here) that, for any $t>0, \sum_{n=a}^{\infty} p_{n}(t)=1$ if and only if $\sum_{n=a}^{\infty} \lambda_{i}^{-1}=\infty$. (If the λ_{n} grow too fast then the process "explodes" at finite time.) To get an intuitive feel for what is going on, define arrival times $T_{i}=\min \{t: X(t)=i\}$ for $i=a, a+1, \ldots$, as for the Poisson process, and interarrival times $S_{i}=T_{i}-T_{i-1}$. Then

$$
F_{T_{a+1}}(t)=\mathbb{P}\left(T_{a+1} \leq t\right)=\mathbb{P}(X(t)>a)=1-\mathbb{P}(X(t)=a)=1-p_{a}(t)=1-e^{-\lambda_{a} t}
$$

and, differentiating,

$$
f_{T_{a+1}}=\lambda_{a} e^{-\lambda_{a} t}
$$

which is the pdf of the exponential function with parameter λ_{a}. Thus $S_{a+1}=T_{a+1} \sim$ $\operatorname{Exp}\left(\lambda_{a}\right)$. Continuing as in Theorem 2.5, we see in general that $S_{i} \sim \operatorname{Exp}\left(\lambda_{i-1}\right)$ for all $i>a$. Thus

$$
\mathbb{E}\left(\sum_{i=a+1}^{\infty} S_{i}\right)=\sum_{i=a+1}^{\infty} \mathbb{E}\left(S_{i}\right)=\sum_{i=a}^{\infty} \frac{1}{\lambda_{i}}
$$

So if $\sum_{n=a}^{\infty} \lambda_{i}^{-1}<\infty$, with probability 1 the population will become infinite at finite time.
2.3. Birth-death processes. A birth-death process with birth parameters $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$ and death parameters μ_{1}, μ_{2}, \ldots is a continuous-time process $X(t)$ on state space \mathbb{N} satisfying the conditions

- The probabilities

$$
p_{i j}(t)=\mathbb{P}(X(s+t)=j \mid X(s)=i)
$$

are independent of s, and of the process up to time s.

- For $h>0$,

$$
p_{i j}(h)= \begin{cases}\lambda_{i} h+o(h), & \text { if } i \geq 0 \text { and } j=i+1 \\ \mu_{i} h+o(h), & \text { if } i \geq 1 \text { and } j=i-1 \\ 1-\left(\lambda_{i}+\mu_{i}\right) h+o(h), & \text { if } i \geq 1 \text { and } j=i \\ 1-\lambda_{0} h+o(h), & \text { if } i=j=0 \\ o(h), & \text { otherwise. }\end{cases}
$$

Also,

$$
p_{i j}(0)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 2.9 (Chapman-Kolmogorov relations). For all $s, t \geq 0$ and $i, j \in \mathbb{N}$,

$$
p_{i j}(s+t)=\sum_{k=0}^{\infty} p_{i k}(s) p_{k j}(t)
$$

Proof. Condition on $X(s)$, as for the discrete case (Theorem 1.2).
We can use Theorem 2.9 to derive differential equations for $p_{i j}(t)$. For $j \geq 1$,

$$
\begin{aligned}
p_{i j}(t+h) & =\sum_{k=0}^{\infty} p_{i k}(t) p_{k j}(h) \\
& =p_{i, j-1}(t)\left(\lambda_{j-1} h\right)+p_{i j}(t)\left(1-\left(\lambda_{j}+\mu_{j}\right) h\right)+p_{i, j+1}(t)\left(\mu_{j+1} h\right)+o(h)
\end{aligned}
$$

Rearranging,

$$
\frac{p_{i j}(t+h)-p_{i j}(t)}{h}=\lambda_{j-1} p_{i, j-1}(t)-\left(\lambda_{j}+\mu_{j}\right) p_{i j}(t)+\mu_{j+1} p_{i, j+1}(t)+\frac{o(h)}{h} .
$$

So

$$
p_{i j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\left(\lambda_{j}+\mu_{j}\right) p_{i j}(t)+\mu_{j+1} p_{i, j+1}(t) \quad(\text { for } j \geq 1)
$$

and

$$
p_{i 0}^{\prime}(t)=-\lambda_{0} p_{i 0}(t)+\mu_{1} p_{i 1}(t)
$$

The special case $j=0$ arises because there is no possibility of a death. These are the forward equations.

Similarly, for $i \geq 1$

$$
\begin{aligned}
p_{i j}(t+h) & =\sum_{k=0}^{\infty} p_{i k}(h) p_{k j}(t) \\
& =\mu_{i} h p_{i-1, j}(t)+\left(1-\left(\lambda_{i}+\mu_{i}\right) h\right) p_{i j}(t)+\lambda_{i} h p_{i+1, j}(t)+o(h)
\end{aligned}
$$

Rearranging,

$$
\frac{p_{i j}(t+h)-p_{i j}(t)}{h}=\mu_{i} p_{i-1, j}(t)-\left(\lambda_{i}+\mu_{i}\right) p_{i j}(t)+\lambda_{i} p_{i+1, j}(t)+\frac{o(h)}{h} .
$$

So

$$
p_{i j}^{\prime}(t)=\mu_{i} p_{i-1, j}(t)-\left(\lambda_{i}+\mu_{i}\right) p_{i j}(t)+\lambda_{i} p_{i+1, j}(t) \quad(\text { for } i \geq 1)
$$

and

$$
p_{0 j}^{\prime}(t)=-\lambda_{0} p_{0 j}(t)+\lambda_{0} p_{1 j}(t)
$$

These are the backwards equations.
Theorem 2.10. Suppose $\lambda_{0}, \lambda_{1}, \ldots>0$ and $\mu_{1}, \mu_{2}, \ldots>0$. There exists a probability vector $\boldsymbol{w}=\left(w_{0}, w_{1}, w_{2}, \ldots\right)$ such that
(1) $p_{i j}(t) \rightarrow w_{j}$ as $t \rightarrow \infty$, for every $i, j \in \mathbb{N}$.
(2) Either (a) $w_{j}=0$ for all j, or (b) $\sum_{j=0}^{\infty} w_{j}=1$ and \boldsymbol{w} is the limiting distribution of $X(t)$.
(3) If we are in case 2(b) then \boldsymbol{w} is the unique equilibrium distribution, i.e., the solution to $w_{j}=\sum_{i} w_{i} p_{i j}(t)$.

Proof. Omitted.
Letting $t \rightarrow \infty$ in the backwards equations,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} p_{i j}^{\prime}(t)=\mu_{i} w_{j}-\left(\lambda_{i}+\mu_{i}\right) w_{j}+\lambda_{i} w_{j}=0, \quad \text { for } i \geq 1, \text { and } \\
& \lim _{t \rightarrow \infty} p_{0 j}^{\prime}(t)=-\lambda_{0} w_{j}+\lambda_{0} w_{j}=0
\end{aligned}
$$

Now consider the forward equations, and let $t \rightarrow \infty$:

$$
\begin{aligned}
& 0=\lambda_{j-1} w_{j-1}-\left(\lambda_{j}+\mu_{j}\right) w_{j}+\mu_{j+1} w_{j+1}, \quad \text { and } \\
& 0=-\lambda_{0} w_{0}+\mu_{1} w_{1}
\end{aligned}
$$

Lemma 2.11. These equations have the unique solution (given w_{0})

$$
w_{j}=\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j-1}}{\mu_{1} \mu_{2} \cdots \mu_{j}} w_{0}
$$

Proof. To see this use induction on j. The base case $j=1$ follows from $0=\lambda_{0} w_{0}+\mu_{1} w_{1}$. Now suppose $j \geq 1$, and we know the result for w_{j-1}, w_{j}. Then

$$
\begin{aligned}
\mu_{j+1} w_{j+1} & =\left(\lambda_{j}+\mu_{j}\right) w_{j}-\lambda_{j-1} w_{j-1} \\
& =\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j}}{\mu_{1} \mu_{2} \cdots \mu_{j}} w_{0}+\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j-1}}{\mu_{1} \mu_{2} \cdots \mu_{j-1}} w_{0}-\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j-1}}{\mu_{1} \mu_{2} \cdots \mu_{j-1}} w_{0}=\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j}}{\mu_{1} \mu_{2} \cdots \mu_{j}} w_{0}
\end{aligned}
$$

So

$$
w_{j+1}=\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j}}{\mu_{1} \mu_{2} \cdots \mu_{j+1}} w_{0} .
$$

2.4. Queueing systems. Customers wait in a queue to be served by a certain number of servers. Denote by $Q(t)$ the number of customers at time t. We assume $Q(0)=0$. In this module we assume:

- If the nth customer arrives at time T_{n}, then the interarrival times $S_{n}=T_{n}-T_{n-1}$ are independent and identically distributed.
- Service is first-come, first-served, with a single queue.
- Service times are independent, identically distributed r.v's.

A queue is thus described by a triple $A / B / s$, where A describes the arrivals distribution, B the service time distribution, and s is the number of servers. Typically, A, B are:

- $M(\lambda)$ (memoryless or Markovian), i.e., following an $\operatorname{Exp}(\lambda)$ distribution. (If $A=M(\lambda)$ the arrivals form a Poisson process of rate λ.)
- $D(d)$ (deterministic), i.e., taking value d with probability 1 .
- G (general), i.e., some fixed but unspecified distribution.
2.4.1. $M(\lambda) / M(\mu) / 1$ queue. In this case, interarrival times are $\operatorname{Exp}(\lambda)$, service times are $\operatorname{Exp}(\mu)$ and there is one server.

We claim that, for a $M(\lambda) / M(\mu) / 1$ queue, $Q(t)$ is a birth-death process with $\lambda_{n}=\lambda$ for all $n \geq 0$, and $\mu_{n}=\mu$ for all $n \geq 1$. As usual, we consider what happens in a (short) time interval $(t, t+h]$.

- $\mathbb{P}($ one arrival in $(t, t+h])=\lambda h+o(h)$. (Arrivals form a Poisson process of rate λ.)
- $\mathbb{P}($ service is completed in $(t, t+h])=1-e^{-\mu h}=\mu h+o(h)$, assuming $Q(t)>1$. (Service time is $\operatorname{Exp}(\mu)$.)
The probability of more than one arrival/service-end in $(t, t+h]$ is $o(h)$. So, for $n \geq 1$,

$$
\begin{aligned}
\mathbb{P}(Q(t+h)=n+1 \mid Q(t)=n) & =\lambda h(1-\mu h)+o(h) \\
& =\lambda h+o(h), \\
\mathbb{P}(Q(t+h)=n \mid Q(t)=n) & =(1-\lambda h)(1-\mu h)+o(h) \\
& =1-(\lambda+\mu) h+o(h), \\
\mathbb{P}(Q(t+h)=n-1 \mid Q(t)=n) & =(1-\lambda h) \mu h+o(h) \\
& =\mu h+o(h) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \mathbb{P}(Q(t+h)=1 \mid Q(t)=0)=\lambda h+o(h) \\
& \mathbb{P}(Q(t+h)=0 \mid Q(t)=0)=1-\lambda h+o(h)
\end{aligned}
$$

So we do have a birth-death process with the specified parameters.
We saw earlier that $p_{0 j}(t)=\mathbb{P}(Q(t)=j) \rightarrow w_{j}$ as $t \rightarrow \infty$, where

$$
\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{j-1}}{\mu_{1} \mu_{2} \ldots \mu_{j}} w_{0}, \quad \text { as } t \rightarrow \infty
$$

In this case, $w_{j}=(\lambda / \mu)^{j} w_{0}$, for $j \geq 0$. For a limiting distribution we need $\sum_{j=0}^{\infty} w_{j}=1$, i.e.,

$$
w_{0} \sum_{j=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{j}=1
$$

If $\lambda \geq \mu$ then the sum does not converge and we do not have a limiting distribution. (The expected length of the queue will tend to infinity with time.) If $\lambda<\mu$ then the geometric series converges to $\mu /(\mu-\lambda)$, and hence $w_{0}=1-\lambda / \mu$. In this case there is a limiting distribution given by

$$
\mathbb{P}(Q(t)=j) \rightarrow w_{j}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{j}
$$

The limiting distribution of $Q(t)$ is essentially geometric; specifically $Q(t)+1 \sim$ Geom $(1-$ $\lambda / \mu)$. At equilibrium, letting $\varrho=\lambda / \mu$,

$$
\begin{aligned}
\mathbb{E}(Q(t)) & =\sum_{j=1}^{\infty} w_{j} j \\
& =\sum_{j=1}^{\infty} \varrho^{j}(1-\varrho) j \\
& =\varrho \sum_{j=1}^{\infty} \varrho^{j-1}(1-\varrho) j \\
& =\frac{\varrho}{1-\varrho}
\end{aligned}
$$

2.4.2. $M(\lambda) / M(\mu) / s$ queue, $s>1$. If k servers are operating at time t then the probability that one becomes available in time interval $(t, t+h]$ is

$$
k(\mu h)(1-\mu h)^{k-1}+o(h)=k \mu h+o(h)
$$

and the probability that more than one becomes available is $o(h)$. The situation with arrivals is as with the $M(\lambda) / M(\mu) / 1$ queue. Arguing as before,

$$
\begin{aligned}
& \mathbb{P}(Q(t+h)=n+1 \mid Q(t)=n)=\lambda h+o(h), \\
& \mathbb{P}(Q(t+h)=n-1 \mid Q(t)=n)=\min \{n, s\} \mu h+o(h), \\
& \mathbb{P}(Q(t+h)=n \mid Q(t)=n)=1-(\lambda+\min \{n, s\} \mu) h+o(h) .
\end{aligned}
$$

So we see that $Q(t)$ is a birth-death process with $\lambda_{k}=\lambda$ for all $k \geq 0$, and

$$
\mu_{k}= \begin{cases}s \mu, & \text { for } k \geq s \\ k \mu, & \text { for } 0 \leq k<s\end{cases}
$$

So $\mathbb{P}(Q(t)=j) \rightarrow w_{j}$, where

$$
w_{j}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{j-1}}{\mu_{1} \mu_{2} \ldots \mu_{j}} w_{0}= \begin{cases}\frac{\lambda^{j}}{\mu(2 \mu) \cdots(j \mu)} w_{0}=\left(\frac{\lambda}{\mu}\right)^{j} \frac{1}{j!} w_{0}, & \text { if } 0 \leq j<s \\ \frac{\lambda^{j}}{\mu(2 \mu) \cdots(s \mu) \times(s \mu)^{j-s}} w_{0}=\left(\frac{\lambda}{\mu s}\right)^{j} \frac{s^{s}}{s!} w_{0}, & \text { if } j \geq s\end{cases}
$$

For $\left(w_{0}, w_{1}, w_{2}, \ldots\right)$ to be a probability distribution we need

$$
\begin{equation*}
\sum_{j=0}^{\infty} w_{j}=\left[\sum_{j=0}^{s-1}\left(\frac{\lambda}{\mu}\right)^{j} \frac{1}{j!}+\frac{s^{s}}{s!} \sum_{j=s}^{\infty}\left(\frac{\lambda}{\mu s}\right)^{j}\right] w_{0}=1 \tag{4}
\end{equation*}
$$

So a limiting distribution exists exactly when the geometric series above converges, i.e., when $\varrho=\lambda / s \mu<1$. The parameter ϱ is the traffic intensity.

In principle, for any s, we can solve (4) for w_{0}, and hence determine w_{1}, w_{2}, \ldots. In practice, the working would get a little complicated for large s. Here we just look at $s=2$ (i.e., the case of two servers); see Exercise Sheet 9 for the case $s=3$.
2.4.3. $M(\lambda) / M(\mu) / 2$ queue. In this case, $\lambda_{k}=\lambda$ for all $k, \mu_{1}=\mu$, and $\mu_{k}=2 \mu$, for all $k \geq 2$. Then, for all $j \geq 1$,

$$
w_{j}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{j-1}}{\mu_{1} \mu_{2} \ldots \mu_{j}} w_{0}=2\left(\frac{\lambda}{2 \mu}\right)^{j} w_{0}=2 \varrho^{j} w_{0}
$$

where $\varrho=\lambda / 2 \mu$. A limiting distribution exists when $\varrho<1$. We require $\sum_{j=0}^{\infty} w_{j}=1$, i.e.,

$$
\left[1+2 \sum_{j=1}^{\infty} \varrho^{j}\right] w_{0}=\left[1+\frac{2 \varrho}{1-\varrho}\right] w_{0}=\frac{1+\varrho}{1-\varrho} w_{0}=1,
$$

and hence

$$
w_{0}=\frac{1-\varrho}{1+\varrho} .
$$

So

$$
\mathbb{P}(Q(t)=j) \rightarrow w_{j}= \begin{cases}\frac{1-\varrho}{1+\varrho}, & \text { if } j=0 \\ 2\left(\frac{1-\varrho}{1+\varrho}\right) \varrho^{j}, & \text { if } j \geq 1\end{cases}
$$

At equilibrium,

$$
\begin{aligned}
\mathbb{E}(Q(t)) & =\sum_{j=1}^{\infty} 2\left(\frac{1-\varrho}{1+\varrho}\right) \varrho^{j} j \\
& =\frac{2 \varrho}{1+\varrho} \sum_{j=1}^{\infty}(1-\varrho) \varrho^{j-1} j \\
& =\frac{2 \varrho}{1-\varrho^{2}}
\end{aligned}
$$

2.4.4. $M(\lambda) / M(\mu) / \infty$ queue. (Not physically reasonable, but might be a good approximation for large s.) We have

$$
\begin{aligned}
& \lambda_{k}=\lambda, \quad \text { for } k \geq 0 \\
& \mu_{k}=k \mu, \quad \text { for } k \geq 1
\end{aligned}
$$

Thus,

$$
w_{j}=\frac{\lambda^{j}}{j!\mu^{j}} w_{0}
$$

For a limiting distribution, we require $\sum_{j=0}^{\infty} w_{j}=1$, i.e.,

$$
w_{0} \sum_{j=0}^{\infty} \frac{1}{j!}\left(\frac{\lambda}{\mu}\right)^{j}=1
$$

So $w_{0}=e^{-\lambda / \mu}$ and there is always a limiting distribution:

$$
\mathbb{P}(Q(t)=j) \rightarrow w_{j}=e^{-\lambda / \mu} \frac{1}{j!}\left(\frac{\lambda}{\mu}\right)^{j}
$$

In other words, $Q(t) \sim \operatorname{Po}(\lambda / \mu)$ at equilibrium. The expected number of customers in the system is thus $\mathbb{E}(Q(t))=\lambda / \mu$.

The queues we studied above $(M(\lambda) / M(\mu) / s$ and $M(\lambda) / M(\mu) / \infty)$ are the only ones that can be modelled as birth-death processes. But some further examples can be treated using other ideas.
2.4.5. $M(\lambda) / D(d) / \infty$ queue. Suppose that $t \geq d$. The customers who are being processed at time t are the ones who arrived in the time interval $(t-d, t]$. (Compare this with the shop with Poisson arrivals in the coursework.) Thus

$$
\mathbb{P}(Q(t)=j)=\mathbb{P}(j \text { arrivals in }(t-d, t])=e^{-\lambda d} \frac{(\lambda d)^{j}}{j!}
$$

in other words, $Q(t) \sim \operatorname{Po}(\lambda d)$. (This is an exact result, not just a description of what happens in the limit.)
2.4.6. $M(\lambda) / G / \infty$ queue. The distribution of service times is \mathcal{Y}, where \mathcal{Y} is an arbitrary distribution with finite expectation. Let $A(t)$ be the number of arrivals in $(0, t]$. By the Law of Total Probability

$$
\begin{equation*}
\mathbb{P}(Q(t)=m)=\sum_{n=m}^{\infty} \mathbb{P}(Q(t)=m \mid A(t)=n) \mathbb{P}(A(t)=n) \tag{5}
\end{equation*}
$$

From earlier work on the Poisson process, we know that, conditioned on $A(t)=n$, the n arrivals in the interval $(0, t]$ are distributed as n independent, Uniform $(0, t]$, random variables. Consider one of these arrivals. The probability that it is still present at time t is $p=\mathbb{P}(U+Y>t)$, where $U \sim \operatorname{Uniform}(0, t]$ and $Y \sim \mathcal{Y}$, and U and Y are independent. The probability that m of the n arrivals are still being processed at time t is distributed binomially, with success probability p, thus

$$
\mathbb{P}(Q(t)=m \mid A(t)=n)=\binom{n}{m} p^{m}(1-p)^{n-m}
$$

Also, since the arrivals form a Poisson process, $A(t) \sim \operatorname{Po}(\lambda t)$, so that

$$
\mathbb{P}(A(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Substituting the above two expressions in (5),

$$
\begin{aligned}
\mathbb{P}(Q(t)=m) & =\sum_{n=m}^{\infty}\binom{n}{m} p^{m}(1-p)^{n-m} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \\
& =\frac{p^{m}(\lambda t)^{m}}{m!} e^{-\lambda t} \sum_{n=m}^{\infty} \frac{(1-p)^{n-m}(\lambda t)^{n-m}}{(n-m)!} \\
& =\frac{p^{m}(\lambda t)^{m}}{m!} e^{-\lambda t} e^{(1-p) \lambda t} \\
& =e^{-p \lambda t} \frac{(p \lambda t)^{m}}{m!}
\end{aligned}
$$

Equivalently, $Q(t) \sim \operatorname{Po}(p \lambda t)$.
We still need to determine $p=\mathbb{P}(U+Y>t)$.

$$
\begin{aligned}
p & =\mathbb{P}(Y>t-U) \\
& =\int_{0}^{t} \frac{1}{t} \mathbb{P}(Y>t-u) d u \\
& =\frac{1}{t} \int_{0}^{t} \mathbb{P}(Y>s) d s
\end{aligned}
$$

Now, $\mathbb{E}(Y)=\int_{0}^{\infty}\left(1-F_{Y}(s)\right) d s=\int_{0}^{\infty} \mathbb{P}(Y>s) d s$, so $p t \rightarrow \mathbb{E}(Y)$ as $t \rightarrow \infty$. Thus, the limiting distribution for $Q(t)$ is $\operatorname{Po}(\lambda \mathbb{E}(Y))$. Note that this agrees with our earlier results for $M(\lambda) / M(\mu) / \infty\left(\right.$ where $\left.\mathbb{E}(Y)=\mu^{-1}\right)$ and $M(\lambda) / D(d) / \infty($ where $\mathbb{E}(Y)=d)$.

