
CONCISE NOTES FOR MTH6141 RANDOM PROCESSES

MARK JERRUM

• What is in these notes: definitions, theorems, proofs, methods.
• What is not in these notes: examples, motivation, chit-chat.

1. Discrete-time Markov chains

Definition 1.1. A stochastic process is a collection of random variables (r.v’s) {Xt : t ∈
T} indexed by a set T (usually thought of as “time”). The Xt take values in some state
space S.

In the first half of the course we take T = N, so the stochastic process is X0, X1, X2, . . ..
This is a discrete-time process. Later we consider continuous time T = R≥0 = {x ∈ R :
x ≥ 0}.

1.1. The Markov property.

Definition 1.2. A stochastic process X0, X1, X2, . . . on a (finite or countably infinite)
state space S is a Markov chain if it satisfies, for all t ∈ N,

P(Xt+1 = s | Xt = st, Xt−1 = st−1, . . . , X0 = s0) = P(Xt+1 = s | Xt = st),

for all s, st, st−1, . . . , s0 ∈ S for which the conditional probabilities are defined.

This is called the Markov property. Informally: “The future conditioned on the present
does not depend on the past.”

If P(Xt+1 = j | Xt = i) is independent of t then we say that the Markov chain is
homogeneous. (We only consider homogeneous Markov chains in this course.) Then we
write P(Xt+1 = j | Xt = i) = pij and call pij the transition probabilities.

Lemma 1.1. If X0, X1, X2, . . . is a Markov chain with P(X0 = i) = µi for i ∈ S, then

P(X0 = s0, X1 = s1, X2 = s2, . . . , Xt = st) = µs0ps0s1ps1s2 . . . pst−1st ,

for all s0, s1, . . . , st ∈ S.

These notes are condensed and adapted from lecture notes of Dr Robert Johnson.
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Proof.

P(X0 = s0, X1 = s1, . . . , Xt = st)

= P(X0 = s0)× P(X1 = s1 | X0 = s0)× P(X2 = s2 | X1 = s1, X0 = s0)

× · · · × P(Xt = st | Xt−1 = st−1, . . . , X0 = s0)

= µs0 P(X1 = s1 | X0 = s0)P(X2 = s2 | X1 = s1) · · ·P(Xt = st | Xt−1 = st−1)

(by the Markov property)

= µs0ps0s1ps1s2 · · · pst−1st

(by definition of pij).

�

A convenient means to visualise Markov chains is by transition graphs. The vertex set
of a transition graph of a Markov chain is the set of states S. For each pair or states i, j
for which the transition probability pij is non-zero, there is a directed edge (arc) from
vertex i to vertex j labelled pij .

1.2. Transition matrices. The events Xt = s, as s ranges over S, partition the sample
space. Thus ∑

j∈S
P(Xt = j) = 1

and ∑
j∈S

P(Xt = j | Xt−1 = i) = 1,

for all i ∈ S, i.e., ∑
j∈S

pij = 1.

The transition matrix is the matrix P with rows and columns indexed by S and with
ij th entry pij . We have just seen that it is stochastic, i.e., that all row sums are 1.
For convenience in numbering the rows and columns of the matrix P , we usually take
S = {1, 2, . . . , n}.

The r-step transition probabilities are

p
(r)
ij = P(Xt+r = j | Xt = i).

(These are independent of t as the chain is homogeneous.) Note that

p
(0)
ij =

{
1, if i = j;

0 otherwise
and p

(1)
ij = pij .

Theorem 1.2 (Chapman-Kolmogorov relations).

p
(r+s)
ij =

∑
k∈S

p
(r)
ik p

(s)
kj , for all i, j ∈ S and r, s ≥ 0.
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Proof.

p
(r+s)
ij = P(Xr+s = j | X0 = i)

=
∑
k∈S

P(Xr+s = j,Xr = k | X0 = i)

(since the events Xr = k partition the sample space)

=
∑
k∈S

P(Xr = k | X0 = i) P(Xr+s = j | Xr = k,X0 = i)

=
∑
k∈S

P(Xr = k | X0 = i) P(Xr+s = j | Xr = k)

(by the Markov property)

=
∑
k∈S

p
(r)
ik p

(s)
ik .

�

Corollary 1.3. If P is the transition matrix of a Markov chain, then P r is the matrix
of r-step transition probabilities, i.e.,

P r =


p
(r)
11 p

(r)
12 · · · p

(r)
1n

p
(r)
21 p

(r)
22 · · · p

(r)
2n

...
...

...

p
(r)
n1 p

(r)
n2 · · · p

(r)
nn

 .

Proof. The proof is by induction on r, with the base case r = 1 being immediate. If
r > 1 then

(P r)ij = (P r−1P )ij

=
∑
k∈S

(P r−1)ikPkj

=
∑
k∈S

p
(r−1)
ik p

(1)
kj (by inductive hypothesis)

= p
(r)
ij (by Theorem 1.2).

�

If the matrix P is diagonalisable, i.e., there is an invertible matrix M and a diagonal
matrix D such that P = MDM−1, then

P r = (MDM−1)(MDM−1) · · · (MDM−1)︸ ︷︷ ︸
r copies

= MDrM−1,

which provides an easy way to compute P r.
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1.3. First-step analysis. A state is absorbing if pii = 1; when we reach an absorbing
state we never leave it.

Several quantities — what is the probability of reaching a certain absorbing state?
what is the expected time to absorption? — can be computed by conditioning on the
first step. The computation reduces to solving simultaneous linear equations.

Theorem 1.4. Suppose (Xt) is a Markov chain with state space S and absorbing states
A ⊆ S, and suppose w : S \ A → R is a weight function on non-absorbing states. Let

T = min{t : Xt ∈ A} and W =
∑T−1

t=0 w(Xt).

(1) Fix k ∈ A. Let ai = P(XT = k | X0 = i). Then the ai satisfy

ai =


1, if i = k;

0, if i ∈ A \ {k};
pik +

∑
j∈S\A pijaj if i ∈ S \A.

(2) Let wi = E(W | X0 = i). Then the wi satisfy

wi =

{
0, if i ∈ A;

w(i) +
∑

j∈S\A pijwj if i /∈ A.

(3) If S is finite and from every state it is possible to reach an absorbing state then
the above systems of equations have unique solutions.

Proof. (1) If i ∈ A (i.e., we start in an absorbing state) then T = 0; thus ak =
P(XT = k | X0 = k) = 1, and if i ∈ A \ {k} then ai = P(XT = k | X0 = i) = 0.
Otherwise (i.e., if i /∈ A), conditioning on the first step:

ai =
∑
j∈S

P(X1 = j | X0 = i)P(XT = k | X1 = j)

(Law of Total Probability)

=
∑
j∈S

pijaj

= pik +
∑
j∈S\A

pijaj

(2) If i ∈ A then T = 0 and wi = 0. Otherwise, conditioning on the first step:

wi = w(i) +
∑
j∈S

P(X1 = j | X0 = i)E
( T−1∑
t=1

w(Xt) | X1 = j
)

(Law of Total Expectation)

= w(i) +
∑
j∈S

pijwj

= w(i) +
∑
j∈S\A

pijwj .

(3) Outside the scope of the module.
�
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1.4. Long-term behaviour. A probability vector is a row vector µ = (µ1, µ2, . . . , µn)
with µi ≥ 0 and

∑n
i=1 µi = 1. Let X0, X1, . . . be a Markov chain with S = {1, 2, . . . , n}.

Let the distribution of X0 be given by a probability vector µ(0) = (µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
n )

(i.e., P(X0 = k) = µ
(0)
k ), the initial distribution. Let µ(t) be the distribution of Xt (i.e.,

P(Xt = k) = µ
(t)
k ).

Lemma 1.5. With the above definitions, µ(t) = µ(0)P t.

Proof.

µ
(t)
k = P(Xt = k) =

n∑
i=1

P(Xt = k | X0 = i)P(X0 = i) =
n∑
i=1

µ
(0)
i p

(t)
ik .

Now appeal to Corollary 1.3. �

1.4.1. The general two-state chain. Suppose S = {1, 2} and

P =

(
1− α α
β 1− β

)
.

Boring cases are

• α = β = 0, when P =

(
1 0
0 1

)
, P t =

(
1 0
0 1

)
, and limt→∞ P

t =

(
1 0
0 1

)
; and

• α = β = 1, when P =

(
0 1
1 0

)
, P t =

(
1 0
0 1

)
if t is even, and P t =

(
0 1
1 0

)
if t

is odd. In this case limn→∞ P
t does not exist.

The interesting case is when 0 < α+β < 2. Then P has eigenvalue 1 with eigenvector(
1
1

)
, and λ = 1− α− β with eigenvector

(
α
−β

)
. Thus

P =

(
1 α
1 −β

)(
1 0
0 λ

)( β
α+β

α
α+β

1
α+β

−1
α+β

)
,

and so

P t =
1

α+ β

(
1 α
1 −β

)(
1 0
0 λt

)(
β α
1 −1

)
=

1

α+ β

(
1 α
1 −β

)(
β α
λt −λt

)
=

1

α+ β

(
β α
β α

)
+

λt

α+ β

(
α −α
−β β

)
.

Since −1 < λ < 1,

lim
t→∞

P t =
1

α+ β

(
β α
β α

)
= W,

say, and

lim
t→∞

µ(t) = lim
t→∞

µ(0)P t = µ(0)W =
( β
α+β ,

α
α+β

)
,
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for any initial distribution µ(0). Note that, in the limit as t → ∞, the distribution of
Xt does not depend on the initial distribution of X0: this is because limt→∞ P

t exists
(which is not so when α = β = 1) and has equal rows (which is not so when α = β = 0).

Definition 1.3. A probability vector w = (w1, . . . , wn) is a limiting distribution for P
if

P t →


w1 w2 . . . wn
w1 w2 . . . wn
...

...
w1 w2 . . . wn

 , as t→∞.

It is an equilibrium distribution if wP = w.

For the 2-state example,

• If α = β = 0 then any vector (w, 1−w) is an equilibrium distribution, and there
is no limiting distribution.
• If α = β = 1 them (12 ,

1
2) is the unique equilibrium distribution, but there is no

limiting distribution.
• If 0 < α+ β < 2 then ( β

α+β ,
α

α+β ) is the unique equilibrium distribution and the

limiting distribution.

Definition 1.4. A Markov chain is irreducible if, for all i, j ∈ S, there is a k ≥ 0 with

p
(k)
ij > 0; it is regular if there is a k ≥ 0 with p

(k)
ij > 0 for all i, j ∈ S.

Theorem 1.6. Let P be the transition matrix of a regular Markov chain on a finite state
space. Then P has a limiting distribution w. Moreover, w is the unique equilibrium
distribution for P .

We will prove a slightly weaker statement.

Lemma 1.7. Let P = (pij : 1 ≤ i, j ≤ n) be the transition matrix of a Markov chain on a
finite state space. Suppose that pij > 0 for all i, j. Then P has a limiting distribution w.
Moreover, w is the unique equilibrium distribution for P .

Proof. Suppose pij ≥ ε > 0 for all 1 ≤ i, j ≤ n. Recall that p
(t)
ij are the t-step transition

probabilities of the Markov chain. Denote by m
(t)
j and M

(t)
j the maximum and minimum

entries in the jth column of P t. That is,

m
(t)
j = min{p(t)ij : 1 ≤ i ≤ n}

and

M
(t)
j = max{p(t)ij : 1 ≤ i ≤ n}

Fix j, and let k′ and k′′ be such that p
(t)
k′j = m

(t)
j and p

(t)
k′′j = M

(t)
j ; that is, k′ and k′′ are

positions in column j of P t at which the minimum and maximum are attained.
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p
(t+1)
ij =

n∑
k=1

pikp
(t)
kj

=
∑
k 6=k′

pikp
(t)
kj + pik′p

(t)
k′j

≤
∑
k 6=k′

pikM
(t)
j + pik′m

(t)
j

=
∑
k

pikM
(t)
j − pik′(M

(t)
j −m

(t)
j )

≤M (t)
j − ε(M

(t)
j −m

(t)
j ).

Since this ineq holds for all i, he have

M
(t+1)
j ≤M (t)

j − ε(M
(t)
j −m

(t)
j ).

A similar calculation yields

m
(t+1)
j ≥ m(t)

j + ε(M
(t)
j −m

(t)
j ).

Notice that the sequenceM
(1)
j ,M

(2)
j ,M

(3)
j , . . . is monotonically decreasing andm

(1)
j ,m

(2)
j ,m

(3)
j , . . .

monotonically increasing. So (Convergence and Continuity) both sequences converge to
a limit.

Subtracting,

M
(t+1)
j −m(t+1)

j ≤ (1− 2ε)(M
(t)
j −m

(t)
j ),

So (M
(t)
j −m

(t)
j )→ 0 (t→∞), and m

(t)
j and M

(t)
j tend to the same limit: call this limit

wj . Since the t-step transition probability p
(t)
ij is bounded by m

(t)
j and M

(t)
j for all t, i.e.,

m
(t)
j ≤ p

(t)
ij ≤M

(t)
j ,

it must also be the case that p
(t)
ij → wj (t → ∞). Thus w = (w1, . . . , wn) is a limiting

distribution for P .
The distribution w is also the unique equilibrium distribution. On the one hand,

wP t+1 → w, as t→∞; on the other, wP t+1 = (wP t)P → wP (t→∞). So wP = w,
i.e., w is an equilibrium distribution for P . To see uniqueness, let w′ be any equilibrium
distribution for P . Then w′P t = w′ for all t ∈ N and so w′P t → w′ as t→∞. However,
w′P t → w as t→∞ since w is the limiting distribution. Thus w′ = w. �

Fix k ∈ S and define the indicator r.v.

As =

{
1, if Xs = k;

0, otherwise.

Then E(As) = P(Xs = k). The proportion of time spent in state k up to but not

including time t is 1
t

∑t−1
s=0As. We are interested in the limit limt→∞ E

(
1
t

∑t−1
s=0As

)
,

assuming it exists: this is the expected proportion of time spent in state k in the long
term.
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Lemma 1.8. If w is the limiting distribution of P (see Definition 1.3) then

E
(

1

t

t−1∑
s=0

As

)
→ wk, as t→∞.

Proof.

E
(

1

t

t−1∑
s=0

As

)
=

1

t
E
( t−1∑
s=0

As

)
=

1

t

t−1∑
s=0

E(As) =
1

t

t−1∑
s=0

P (Xs = k).

But P(Xs = k)→ wk as s→∞, so

1

t

t−1∑
s=0

P(Xs = k)→ wk, as t→∞.

(If you took MTH5124 Convergence and Continuity, you could pause to verify this
claim.) �

Theorem 1.9. Any irreducible Markov chain on a finite state space S has a unique
equilibrium distribution w. Moreover,

E(proportion of time spent in state k up to time t)→ wk, t→∞.
Proof. Let P be the transition matrix. Consider the transition matrix Q = 1

2(I + P ).
Since P is irreducible, there exists t ∈ N such that for all i, j ∈ S, psij > 0 for some s ≤ t.
Now,

Qt = 1
2(I + P )t = 2−t

[
I +

(
t

1

)
P +

(
t

2

)
P 2 + · · ·+

(
t

t− 1

)
P t−1 + P t

]
For each pair i, j ∈ S, there is some term (matrix) in the sum which has a non-zero entry
in row i and column j. So Qt has no non-zero entries, and Q is regular. By Theorem 1.6
there is a unique distribution w such that wQ = w, i.e., such that w(12P + 1

2I) = w. It

follows that 1
2wP + 1

2w = w, and hence wP = w. In other words, w is an equilibrium
distribution for P also. Conversely, any equilibrium distribution for P is an equilibrium
distribution for Q also. So w is the unique equilibrium distribution for P .

The claim about the proportion of time spent in state k in the long term is beyond
the scope of the module. �

Regular ⇒ Irreducible

⇓ (Thm 1.6) ⇓ (Thm 1.9)

Limiting distribution ⇒ ! Stationary distribution

⇓ (Thm 1.9)

Long-run averages

Figure 1. Summary of the situation for finite-state Markov chains.
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1.5. Recurrence and Transience. The definitions and theorems in the previous sec-
tion were phrased for finite state spaces. We often want to consider (countably) infinite
state spaces. If S = {0, 1, 2, . . .} = N we say that (w0, w1, w2, . . .) is an equilibrium
distribution if wk =

∑∞
i=0wipik for all k, and

∑∞
i=0wi = 1. We say that (w0, w1, w2, . . .)

is a limiting distribution if P(Xt = k | X0 = i)→ wk (t→∞), for all i, k ∈ N.

Definition 1.5. Suppose a, b ∈ S are states. We say that a communicates with b

(written a → b) if p
(t)
ab for some t ≥ 0. We say that a and b intercommunicate (written

a↔ b) if a→ b and b→ a. The communicating classes of the chain are the equivalence
classes of S under ↔.

Note (i) a↔ a for all a ∈ S, (ii) a Markov chain is irreducible if a↔ b for all a, b ∈ S.
Define

f
(t)
ii = P(Xt = i,Xt−1 6= i,Xt−2 6= i, . . . ,X1 6= i | X0 = i)

(informally, f
(t)
ii is the probability that the first return to i occurs at time t). Then define

fii =
∑∞

t=1 f
(t)
ii (informally, the probability of ever returning to i).

Definition 1.6. We say that a state i is recurrent (or persistent) if fii = 1 and transient
otherwise (i.e., if fii < 1).

Lemma 1.10. For all t ≥ 1, p
(t)
ii =

∑t
s=1 f

(s)
ii p

(t−s)
ii .

Proof. Condition on the time s of first return to state i:

p
(t)
ii =

t∑
s=1

P(X1 6= i, . . . ,Xs−1 6= i,Xs = i | X0 = i)P(Xt = i | Xs = i)

=
t∑

s=1

f
(s)
ii p

(t−s)
ii .

�

Thus, if we know the values p
(t)
ii , for t = 1, 2, . . ., we can calculate the first return

probabilities p
(t)
ii as follows:

f
(1)
ii = p

(1)
ii

f
(2)
ii + p

(1)
ii f

(1)
ii = p

(2)
ii , i.e., f

(2)
ii = p

(2)
ii − p

(1)
ii f

(1)
ii

f
(3)
ii + p

(1)
ii f

(2)
ii + p

(2)
ii f

(1)
ii = p

(3)
ii , i.e., f

(3)
ii = p

(3)
ii − p

(2)
ii f

(1)
ii − p

(1)
ii f

(2)
ii ,

etc.
Let Mi be the number of returns to i, given that X0 = i, and write Mi = ∞ if the

Markov chain returns infinitely often.

Lemma 1.11. (1) If i is recurrent then P(Mi <∞) = 0 and E(Mi) is undefined.
(2) If i is transient then P(Mi <∞) = 1 and E(Mi) = fii/(1− fii).

Proof. Observe that P(Mi = k) = fkii(1− fii), since fkii expresses the probability that we
return k times to state i, and (1 − fii) that we never return again. So if i is transient
then fii < 1 and Mi + 1 ∼ Geom(1− fii); in this case P(Mi <∞) = 1 and E(Mi) + 1 =
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E(Mi + 1) = 1/(1 − fii), i.e., E(Mi) = fii/(1 − fii). On the other hand, if state i is
recurrent then fii = 1 and P(Mi = k) = fkii(1 − fii) = 0 for all k ∈ N; in this case
P(Mi <∞) = 0. �

Lemma 1.12. (1) State i is recurrent iff
∑∞

t=1 p
(t)
ii =∞.

(2) State i is transient iff
∑∞

t=1 p
(t)
ii is finite.

Proof. Let

At =

{
1, if Xt = i;

0, otherwise.

(So At is the indicator r.v. of the event Xt = i.) Then

(1) E(Mi) = E
( ∞∑
t=1

At

)
=
∞∑
t=1

E(At) =
∞∑
t=1

p
(t)
ii .

If i is transient, then E(Mi) exists, by Lemma 1.11, and hence the sum
∑∞

t=1 p
(t)
ii is

finite. Conversely, if the sum is finite then E(Mi) exists and i is transient. These deals
with (2). But parts (1) and (2) of the lemma are actually logically equivalent! �

Theorem 1.13. Suppose a, b ∈ S are states.

(1) If a↔ b and a is recurrent then b is recurrent.
(2) If a↔ b and a is transient then b is transient.

Proof. Since (a) and (b) are equivalent, we just prove (a).

Since a → b there exists r with p
(r)
ab > 0; since b → a there exists s with p

(s)
ba > 0.

Suppose that a is recurrent. Then
∞∑
t=1

p
(t)
bb ≥

∞∑
k=1

p
(r+s+k)
bb ≥

∞∑
k=1

p
(s)
ba p

(k)
aa p

(r)
ab = α

∞∑
k=1

p(k)aa ,

where α = p
(s)
ba p

(r)
ab > 0. But

∑∞
k=1 p

(k)
aa = ∞ by Lemma 1.12 and the fact that a is

recurrent. So
∑∞

t=1 p
(t)
bb =∞ and b is recurrent. �

So we can speak of a communicating class as being recurrent or transient, knowing
that all states are the same. We say that recurrence and transience are class properties.

1.6. Random walk on Z. As an example application of Lemma 1.12, consider the
Markov chain (Xt) with state space S = Z and transition probabilities given by

pij =


p, if j = i+ 1;

1− p, if j = i− 1;

0, otherwise.

First consider the symmetric random walk, which is the case p = 1
2 . Since

∑2n
k=0

(
2n
k

)
=

22n, the average of the coefficients
(
2n
k

)
taken over 0 ≤ k ≤ 2n is 22n/(2n+ 1). Now the

largest of these binomial coefficients is
(
2n
n

)
(you can easily check that the coefficients

increase for k < n and decrease for k > n) and the largest coefficient is certainly at least

as large as the average. It follows that
(
2n
n

)
≥ 22n/(2n+ 1).
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We now estimate the 2n-step transition probability p
(2n)
00 . In order to be back at

state 0 after 2n steps, the Markov chain must make n right (i.e., increasing) transitions,

and n left (i.e., decreasing). There are
(
2n
n

)
possible ways to choose the sequence of n left

and n right transitions. Each such sequence has a probability 2−2n of occurring. Thus

p
(2n)
00 =

(
2n

n

)
2−2n ≥ 22n

2n+ 1
× 2−2n =

1

2n+ 1
.

Now
∞∑
t=1

p
(t)
00 ≥

∞∑
n=1

p
(2n)
00 ≥

∞∑
n=1

1

2n+ 1
≥ 1

2

∞∑
n=1

1

n+ 1
=∞.

Hence, by Lemma 1.12, state 0 is recurrent. By symmetry (or by Theorem 1.13) all
states are recurrent.

Now consider an asymmetric walk with p 6= 1
2 . For concreteness, suppose p = 2

3 . By
counting sequences of transitions as before, we have

p
(2n)
00 =

(
2n

n

)(1

3

)n(2

3

)n
≤ 22n

(2

9

)n
=
(8

9

)n
,

where we have used the fact that the binomial coefficient
(
2n
n

)
is certainly less than the

sum
∑2n

k=0

(
2n
k

)
= 22n of all coefficients. Then

∞∑
t=1

p
(t)
00 =

∞∑
n=1

p
(2n)
00 ≤

∞∑
n=1

(8

9

)n
= 9− 1 = 8,

where we have used the fact that p
(t)
00 = 0 when t is odd. Hence, by Lemma 1.12, state 0

is transient. By symmetry (or by Theorem 1.13) all states are transient.

1.7. First return time. If i is recurrent, let Ri = min{t : t ≥ 1, Xt = i}, where we
assume X0 = i. This is the first return time. Then

P(Ri = k) = f
(k)
ii , and

E(Ri) =

∞∑
k=1

kf
(k)
ii .

E(Ri) is the expected first return time or the expected time between visits to i.

Definition 1.7. Suppose i is a recurrent state. We say that state i is positive recurrent
if E(Ri) is finite, and null recurrent if E(Ri) is infinite.

Theorem 1.14. Suppose i is recurrent.

• If p
(t)
ii → 0 as t→∞ then i is null recurrent.

• If p
(t)
ii 6→ 0 as t→∞ then i is positive recurrent.

Proof. Omitted. �

The above theorem can be used to show that positive/null recurrence are class prop-
erties.
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Theorem 1.15. Consider an irreducible Markov chain.

• If the Markov chain is positive recurrent, then it has a unique equilibrium distri-
bution, which is given by wi = 1/E(Ri) for all i ∈ S.
• Otherwise (i.e., it is null recurrent or transient) the Markov chain has no equi-

librium distribution.

Proof. Omitted. �

1.7.1. Summary of recurrence/transience. For a Markov chain with state space S (pos-
sibly infinite) and i ∈ S,

i recurrent ⇔ fii = 1 ⇔
∑∞

t=1 p
(t)
ii =∞ ⇔ E(Mi) =∞;

i transient ⇔ fii < 1 ⇔
∑∞

t=1 p
(t)
ii <∞ ⇔ E(Mi) = fii/(1− fii),

where Mi is the number of returns to state i.
Now assume the Markov chain is irreducible and that state i is recurrent. Then

i positive recurrent ⇔ E(Ri) <∞ ⇔ p
(t)
ii 6→ 0 ⇔ ∃ ! equilibrium distribution;

i null recurrent ⇔ E(Ri) =∞ ⇔ p
(t)
ii → 0 ⇔ ¬∃ ! equilibrium distribution,

where Ri is the time of first return to i. When a unique equilibrium distribution exists,
it is given by wi = 1/E(Ri).


