
MTH6141 MAY 2012 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

Q1 (a) [Standard definitions.] (Xt) is a Markov chain if

Pr(Xt+1 = s | Xt = st, Xt−1 = st−1, . . . , X0 = s0) = Pr(Xt+1 = s | Xt = st),

for all t ∈ N and all s, st, st−1, . . . , s0 ∈ S for which the conditional probabilities are
defined.
P = (pij : 1 ≤ i, j ≤ n) is the matrix with pij = Pr(Xt+1 = j | Xt = i) for all i, j.

(b) [Special case of bookwork.] Using the Law of Total Probability and the Markov property,

Pr(Xt+2 = j | Xt = i)

=
n∑
k=1

Pr(Xt+1 = k | Xt = i) Pr(Xt+2 = j | Xt+1 = k,Xt = i)

=
n∑
k=1

Pr(Xt+1 = k | Xt = i) Pr(Xt+2 = j | Xt+1 = k)

=
n∑
k=1

pikpkj = (P 2)ij .

(c) [Easy calculations.]
(i) Pr(X1 = 2 | X0 = 1) = p1,2 = 1

6 [1 mark];

(ii) Pr(X2 = 3 | X1 = 2, X0 = 1) = p2,3 = 1
3 (Markov property) [1 mark];

(iii) Pr(X2 = 3, X1 = 2 | X0 = 1) = Pr(X1 = 2 | X0 = 1) Pr(X2 = 3 | X1 = 2, X0 =
1) = p1,2p2,3 = 1

6
1
3 = 1

18 [2 marks]; and

(iv) Pr(X2 = 3 | X0 = 1) = (P 2)1,3 = 1
3

1
2 + 1

6
1
3 + 1

2
2
3 = 5

9 [2 marks].
(d) [Similar things appeared in the coursework.]

Pr(X100 = 1 | X0 = 1) =

3∑
k=1

Pr(X99 = k | X0 = 1) Pr(X100 = 1 | X99 = k)

=
3∑

k=1

Pr(X99 = k | X0 = 1)× 1
3

= 1
3 .
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Q2 (a) [Standard definition.] The t step transition probabilities are

p
(t)
ij = Pr(Xt = j | X0 = i),

for all i, j ∈ S.
(b) [A similar example appeared in lectures.] Let the states be labelled {0, 1, 2, 3} according

to the number of balls in the first urn. Then

P =


0 1 0 0
1
3 0 2

3 0
0 2

3 0 1
3

0 0 1 0

 .

(c) [Standard definition.] A Markov chain is irreducible if, for all i, j ∈ S, there exists t

such that p
(t)
ij > 0. There are transitions with non-zero probability 0 → 1 → 2 → 3 and

3→ 2→ 1→ 0, so it is possible to go from any state to any other in at most 3 transitions.
(d) [Easy calculation.]

w0 = 1
3w1,

w1 = w0 + 2
3w2,

w2 = 2
3w1 + w3, and

w3 = 1
3w2.

Thus w = (1, 3, 3, 1)w0. For w to be a probability distribution, w0 = 1
8 . Thus w =

(18 ,
3
8 ,

3
8 ,

1
8) is an equilibrium distribution.

(e) [Standard fact from the course.] Every irreducible Markov chain has a unique equilibrium
distribution, so the vector w from part (d) is unique.
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Q3 (a) [Standard definition.] fii =
∑∞

t=1 f
(t)
ii , where f

(t)
ii = Pr(Xt = i,Xt−1 6= i, . . . ,X1 6= i |

X0 = i). State i is recurrent iff fii = 1.

(b) [Standard result from the course.] State i is recurrent iff
∑∞

t=1 p
(t)
ii =∞.

(c) [Bookwork.] Since
∑2n

k=0

(
2n
k

)
= 22n, the average of the coefficients

(
2n
k

)
taken over 0 ≤

k ≤ 2n is 22n/(2n+ 1). Now the largest of these binomial coefficients is
(
2n
n

)
so it follows

that
(
2n
n

)
≥ 22n/(2n+ 1).

In order to be back at state 0 after 2n steps, the Markov chain must make n increasing
transitions, and n decreasing. There are

(
2n
n

)
possible ways to choose such a sequence of

transitions. Each such sequence has a probability 2−2n of occurring. Thus

p
(2n)
00 =

(
2n

n

)
2−2n ≥ 22n

2n+ 1
× 2−2n =

1

2n+ 1
.

Now
∞∑
t=1

p
(t)
00 ≥

∞∑
n=1

p
(2n)
00 ≥

∞∑
n=1

1

2n+ 1
≥ 1

2

∞∑
n=1

1

n+ 1
=∞.

By part (b), state 0 is recurrent.
(d) [Unseen.] The communicating classes are {0}, {1, 2, 3, . . .} and {−1,−2,−3, . . .}. (State 0

is absorbing, so the Markov chain cannot escape or pass through it.) {0} is clearly
recurrent. State 1 is transient since f11 ≤ 1

2 < 1, so the communicating class {1, 2, 3, . . .}
is transient, as transience is a class property. The communicating class {−1,−2,−3, . . .}
is transient, by symmetry.
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Q4 (a) [Standard fact.] X(t) ∼ Po(λt).
(b) [Special case of a result from the course.]

Pr(X(t) = k | X(2t) = n) =
Pr(X(t) = k,X(2t) = n)

Pr(X(2t) = n)

=
Pr(X(t)−X(0) = k) Pr(X(2t)−X(t) = n− k)

Pr(X(2t)−X(0) = n)

=

[
e−λt(λt)k/k!

]
×
[
e−λt(λt)n−k/(n− k)!

]
e−2λt(2λt)n/n!

=

(
n

k

)
2−n.

So conditioned on X(2t) = n, X(t) ∼ Bin(n, 12).
(c) [Routine calculations, such as the students have sen before.] Let A(t) and B(t) be the

Poisson processes representing the goals scored by the two teams.
(i) B(32)−B(0) ∼ Po(32), so the expected number is 3

2 .
(ii)

Pr(A(34) = 1, A(32)−A(34) = 1) = Pr(A(34) = 1) Pr(A(32)−A(34) = 1)

= 3
2e
−3
2 × 3

2e
−3
2

= 9
4e
−3.

(iii) A(32) +B(32) ∼ Po(3× 3
2) = Po(94) (superposition of two Poisson processes).

(d) [Unseen.] The half-time score must have been 1–0 to B. So the required probability is

Pr(A(34) = 0 | A(32) = 3) Pr(B(34) = 1 | B(32) = 1) = (12)3 × 1
2 = 1

16 ,

using part (b).
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Q5 (a) [Standard definition.] An M(λ)/M(µ)/1 queueing system has a single queue, arrivals
forming a Po(λ) process, and service times distributed Exp(µ).

(b) [Bookwork.] The appropriate parameters are λ0, λ1, λ2, · · · = λ (in time interval (t, t+ h]
the probability on an arrival is λh + o(h)), and µ0 = 0 and µ1 = µ2 = · · · = µ (in
time interval (t, t+ h] the probability on a departure is µh+ o(h), provided the queue is
non-empty).

(c) [Bookwork.] According to the fact given in the question, wj = (λ/µ)jw0, for j ≥ 0. For
a limiting distribution we need

∑∞
j=0wj = 1, i.e.,

w0

∞∑
j=0

(λ
µ

)j
= 1.

If λ < µ then the geometric series converges to µ/(µ − λ), and hence w0 = 1 − λ/µ. In
this case there is a limiting distribution given by

Pr(Q(t) = j)→ wj =
(

1− λ

µ

)(λ
µ

)j
.

The limiting distribution of Q(t) is essentially geometric; specifically Q(t)+1 ∼ Geom(1−
λ/µ).

(d) [Unseen, though equivalent to an M(λ)/M(µ)/∞ queueing system.] The appropriate
parameters are λ0, λ1, λ2, · · · = λ (in time interval (t, t+ h] the probability on a arrival is
λh+ o(h)), and µ0 = 0 and µ1 = µ, µ2 = 2µ, µ3 = 3µ, etc. (in time interval (t, t+ h] the
probability of a death is kµh + o(h), where k is the current population). For a limiting
distribution we need

∑∞
j=0wj = 1, i.e.,

w0

∞∑
j=0

1

j!

(λ
µ

)j
= 1.

Thus w0 = exp(−λ/µ) and there is always a limiting distribution, namely Po(λ/µ).


