MTH6141 MAY 2012 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

Q1 (a) [Standard definitions.] $\left(X_{t}\right)$ is a Markov chain if
$\operatorname{Pr}\left(X_{t+1}=s \mid X_{t}=s_{t}, X_{t-1}=s_{t-1}, \ldots, X_{0}=s_{0}\right)=\operatorname{Pr}\left(X_{t+1}=s \mid X_{t}=s_{t}\right)$,
for all $t \in \mathbb{N}$ and all $s, s_{t}, s_{t-1}, \ldots, s_{0} \in S$ for which the conditional probabilities are defined.
$P=\left(p_{i j}: 1 \leq i, j \leq n\right)$ is the matrix with $p_{i j}=\operatorname{Pr}\left(X_{t+1}=j \mid X_{t}=i\right)$ for all i, j.
(b) [Special case of bookwork.] Using the Law of Total Probability and the Markov property,

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+2}=j \mid X_{t}=i\right) \\
& \quad=\sum_{k=1}^{n} \operatorname{Pr}\left(X_{t+1}=k \mid X_{t}=i\right) \operatorname{Pr}\left(X_{t+2}=j \mid X_{t+1}=k, X_{t}=i\right) \\
& \quad=\sum_{k=1}^{n} \operatorname{Pr}\left(X_{t+1}=k \mid X_{t}=i\right) \operatorname{Pr}\left(X_{t+2}=j \mid X_{t+1}=k\right) \\
& \quad=\sum_{k=1}^{n} p_{i k} p_{k j}=\left(P^{2}\right)_{i j} .
\end{aligned}
$$

(c) [Easy calculations.]
(i) $\operatorname{Pr}\left(X_{1}=2 \mid X_{0}=1\right)=p_{1,2}=\frac{1}{6}[1 \mathrm{mark}]$;
(ii) $\operatorname{Pr}\left(X_{2}=3 \mid X_{1}=2, X_{0}=1\right)=p_{2,3}=\frac{1}{3}$ (Markov property) [1 mark];
(iii) $\operatorname{Pr}\left(X_{2}=3, X_{1}=2 \mid X_{0}=1\right)=\operatorname{Pr}\left(X_{1}=2 \mid X_{0}=1\right) \operatorname{Pr}\left(X_{2}=3 \mid X_{1}=2, X_{0}=\right.$ 1) $=p_{1,2} p_{2,3}=\frac{1}{6} \frac{1}{3}=\frac{1}{18}$ [2 marks]; and
(iv) $\operatorname{Pr}\left(X_{2}=3 \mid X_{0}=1\right)=\left(P^{2}\right)_{1,3}=\frac{1}{3} \frac{1}{2}+\frac{1}{6} \frac{1}{3}+\frac{1}{2} \frac{2}{3}=\frac{5}{9}$ [2 marks].
(d) [Similar things appeared in the coursework.]

$$
\begin{aligned}
\operatorname{Pr}\left(X_{100}=1 \mid X_{0}=1\right) & =\sum_{k=1}^{3} \operatorname{Pr}\left(X_{99}=k \mid X_{0}=1\right) \operatorname{Pr}\left(X_{100}=1 \mid X_{99}=k\right) \\
& =\sum_{k=1}^{3} \operatorname{Pr}\left(X_{99}=k \mid X_{0}=1\right) \times \frac{1}{3} \\
& =\frac{1}{3} .
\end{aligned}
$$

Q2 (a) [Standard definition.] The t step transition probabilities are

$$
p_{i j}^{(t)}=\operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right),
$$

for all $i, j \in S$.
(b) [A similar example appeared in lectures.] Let the states be labelled $\{0,1,2,3\}$ according to the number of balls in the first urn. Then

$$
P=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} & 0 \\
0 & \frac{2}{3} & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(c) [Standard definition.] A Markov chain is irreducible if, for all $i, j \in S$, there exists t such that $p_{i j}^{(t)}>0$. There are transitions with non-zero probability $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ and $3 \rightarrow 2 \rightarrow 1 \rightarrow 0$, so it is possible to go from any state to any other in at most 3 transitions.
(d) [Easy calculation.]

$$
\begin{aligned}
w_{0} & =\frac{1}{3} w_{1}, \\
w_{1} & =w_{0}+\frac{2}{3} w_{2}, \\
w_{2} & =\frac{2}{3} w_{1}+w_{3}, \text { and } \\
w_{3} & =\frac{1}{3} w_{2} .
\end{aligned}
$$

Thus $\boldsymbol{w}=(1,3,3,1) w_{0}$. For \boldsymbol{w} to be a probability distribution, $w_{0}=\frac{1}{8}$. Thus $\boldsymbol{w}=$ $\left(\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right)$ is an equilibrium distribution.
(e) [Standard fact from the course.] Every irreducible Markov chain has a unique equilibrium distribution, so the vector \boldsymbol{w} from part (d) is unique.

Q3 (a) [Standard definition.] $f_{i i}=\sum_{t=1}^{\infty} f_{i i}^{(t)}$, where $f_{i i}^{(t)}=\operatorname{Pr}\left(X_{t}=i, X_{t-1} \neq i, \ldots, X_{1} \neq i \mid\right.$ $\left.X_{0}=i\right)$. State i is recurrent iff $f_{i i}=1$.
(b) [Standard result from the course.] State i is recurrent iff $\sum_{t=1}^{\infty} p_{i i}^{(t)}=\infty$.
(c) [Bookwork.] Since $\sum_{k=0}^{2 n}\binom{2 n}{k}=2^{2 n}$, the average of the coefficients $\binom{2 n}{k}$ taken over $0 \leq$ $k \leq 2 n$ is $2^{2 n} /(2 n+1)$. Now the largest of these binomial coefficients is $\binom{2 n}{n}$ so it follows that $\binom{2 n}{n} \geq 2^{2 n} /(2 n+1)$.
In order to be back at state 0 after $2 n$ steps, the Markov chain must make n increasing transitions, and n decreasing. There are $\binom{2 n}{n}$ possible ways to choose such a sequence of transitions. Each such sequence has a probability $2^{-2 n}$ of occurring. Thus

$$
p_{00}^{(2 n)}=\binom{2 n}{n} 2^{-2 n} \geq \frac{2^{2 n}}{2 n+1} \times 2^{-2 n}=\frac{1}{2 n+1} .
$$

Now

$$
\sum_{t=1}^{\infty} p_{00}^{(t)} \geq \sum_{n=1}^{\infty} p_{00}^{(2 n)} \geq \sum_{n=1}^{\infty} \frac{1}{2 n+1} \geq \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n+1}=\infty
$$

By part (b), state 0 is recurrent.
(d) [Unseen.] The communicating classes are $\{0\},\{1,2,3, \ldots\}$ and $\{-1,-2,-3, \ldots\}$. (State 0 is absorbing, so the Markov chain cannot escape or pass through it.) $\{0\}$ is clearly recurrent. State 1 is transient since $f_{11} \leq \frac{1}{2}<1$, so the communicating class $\{1,2,3, \ldots\}$ is transient, as transience is a class property. The communicating class $\{-1,-2,-3, \ldots\}$ is transient, by symmetry.

Q4 (a) [Standard fact.] $X(t) \sim \operatorname{Po}(\lambda t)$.
(b) [Special case of a result from the course.]

$$
\begin{aligned}
\operatorname{Pr}(X(t)=k \mid X(2 t)=n) & =\frac{\operatorname{Pr}(X(t)=k, X(2 t)=n)}{\operatorname{Pr}(X(2 t)=n)} \\
& =\frac{\operatorname{Pr}(X(t)-X(0)=k) \operatorname{Pr}(X(2 t)-X(t)=n-k)}{\operatorname{Pr}(X(2 t)-X(0)=n)} \\
& =\frac{\left[e^{-\lambda t}(\lambda t)^{k} / k!\right] \times\left[e^{-\lambda t}(\lambda t)^{n-k} /(n-k)!\right]}{e^{-2 \lambda t}(2 \lambda t)^{n} / n!} \\
& =\binom{n}{k} 2^{-n} .
\end{aligned}
$$

So conditioned on $X(2 t)=n, X(t) \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$.
(c) [Routine calculations, such as the students have sen before.] Let $A(t)$ and $B(t)$ be the Poisson processes representing the goals scored by the two teams.
(i) $B\left(\frac{3}{2}\right)-B(0) \sim \operatorname{Po}\left(\frac{3}{2}\right)$, so the expected number is $\frac{3}{2}$.
(ii)

$$
\begin{aligned}
\operatorname{Pr}\left(A\left(\frac{3}{4}\right)=1, A\left(\frac{3}{2}\right)-A\left(\frac{3}{4}\right)=1\right) & =\operatorname{Pr}\left(A\left(\frac{3}{4}\right)=1\right) \operatorname{Pr}\left(A\left(\frac{3}{2}\right)-A\left(\frac{3}{4}\right)=1\right) \\
& =\frac{3}{2} e^{-\frac{3}{2}} \times \frac{3}{2} e^{-\frac{3}{2}} \\
& =\frac{9}{4} e^{-3} .
\end{aligned}
$$

(iii) $A\left(\frac{3}{2}\right)+B\left(\frac{3}{2}\right) \sim \operatorname{Po}\left(3 \times \frac{3}{2}\right)=\operatorname{Po}\left(\frac{9}{4}\right)$ (superposition of two Poisson processes).
(d) [Unseen.] The half-time score must have been $1-0$ to B. So the required probability is

$$
\operatorname{Pr}\left(\left.A\left(\frac{3}{4}\right)=0 \right\rvert\, A\left(\frac{3}{2}\right)=3\right) \operatorname{Pr}\left(\left.B\left(\frac{3}{4}\right)=1 \right\rvert\, B\left(\frac{3}{2}\right)=1\right)=\left(\frac{1}{2}\right)^{3} \times \frac{1}{2}=\frac{1}{16},
$$

using part (b).

Q5 (a) [Standard definition.] An $M(\lambda) / M(\mu) / 1$ queueing system has a single queue, arrivals forming a $\operatorname{Po}(\lambda)$ process, and service times distributed $\operatorname{Exp}(\mu)$.
(b) [Bookwork.] The appropriate parameters are $\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots=\lambda$ (in time interval $(t, t+h]$ the probability on an arrival is $\lambda h+o(h)$), and $\mu_{0}=0$ and $\mu_{1}=\mu_{2}=\cdots=\mu$ (in time interval $(t, t+h]$ the probability on a departure is $\mu h+o(h)$, provided the queue is non-empty).
(c) [Bookwork.] According to the fact given in the question, $w_{j}=(\lambda / \mu)^{j} w_{0}$, for $j \geq 0$. For a limiting distribution we need $\sum_{j=0}^{\infty} w_{j}=1$, i.e.,

$$
w_{0} \sum_{j=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{j}=1
$$

If $\lambda<\mu$ then the geometric series converges to $\mu /(\mu-\lambda)$, and hence $w_{0}=1-\lambda / \mu$. In this case there is a limiting distribution given by

$$
\operatorname{Pr}(Q(t)=j) \rightarrow w_{j}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{j}
$$

The limiting distribution of $Q(t)$ is essentially geometric; specifically $Q(t)+1 \sim \operatorname{Geom}(1-$ $\lambda / \mu)$.
(d) [Unseen, though equivalent to an $M(\lambda) / M(\mu) / \infty$ queueing system.] The appropriate parameters are $\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots=\lambda$ (in time interval $(t, t+h]$ the probability on a arrival is $\lambda h+o(h)$), and $\mu_{0}=0$ and $\mu_{1}=\mu, \mu_{2}=2 \mu, \mu_{3}=3 \mu$, etc. (in time interval $(t, t+h]$ the probability of a death is $k \mu h+o(h)$, where k is the current population). For a limiting distribution we need $\sum_{j=0}^{\infty} w_{j}=1$, i.e.,

$$
w_{0} \sum_{j=0}^{\infty} \frac{1}{j!}\left(\frac{\lambda}{\mu}\right)^{j}=1 .
$$

Thus $w_{0}=\exp (-\lambda / \mu)$ and there is always a limiting distribution, namely $\operatorname{Po}(\lambda / \mu)$.

