MTH6141 MAY 2012 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

Q1 (a) [Standard definitions.] (X_t) is a Markov chain if

 $\Pr(X_{t+1} = s \mid X_t = s_t, X_{t-1} = s_{t-1}, \dots, X_0 = s_0) = \Pr(X_{t+1} = s \mid X_t = s_t),$

for all $t \in \mathbb{N}$ and all $s, s_t, s_{t-1}, \ldots, s_0 \in S$ for which the conditional probabilities are defined.

- $P = (p_{ij} : 1 \le i, j \le n)$ is the matrix with $p_{ij} = \Pr(X_{t+1} = j \mid X_t = i)$ for all i, j.
- (b) [Special case of bookwork.] Using the Law of Total Probability and the Markov property,

$$\Pr(X_{t+2} = j \mid X_t = i)$$

$$= \sum_{k=1}^{n} \Pr(X_{t+1} = k \mid X_t = i) \Pr(X_{t+2} = j \mid X_{t+1} = k, X_t = i)$$

$$= \sum_{k=1}^{n} \Pr(X_{t+1} = k \mid X_t = i) \Pr(X_{t+2} = j \mid X_{t+1} = k)$$

$$= \sum_{k=1}^{n} p_{ik} p_{kj} = (P^2)_{ij}.$$

(c) [Easy calculations.]

- (i) $\Pr(X_1 = 2 \mid X_0 = 1) = p_{1,2} = \frac{1}{6} [1 \text{ mark}];$
- (i) $\Pr(X_2 = 3 \mid X_1 = 2, X_0 = 1) = p_{2,3} = \frac{1}{3}$ (Markov property) [1 mark]; (ii) $\Pr(X_2 = 3, X_1 = 2 \mid X_0 = 1) = \Pr(X_1 = 2 \mid X_0 = 1) \Pr(X_2 = 3 \mid X_1 = 2, X_0 = 1) = p_{1,2}p_{2,3} = \frac{1}{6} \frac{1}{3} = \frac{1}{18}$ [2 marks]; and (iv) $\Pr(X_2 = 3 \mid X_0 = 1) = (P^2)_{1,3} = \frac{1}{3} \frac{1}{2} + \frac{1}{6} \frac{1}{3} + \frac{1}{2} \frac{2}{3} = \frac{5}{9}$ [2 marks]. (d) [Similar things appeared in the coursework.]

$$\Pr(X_{100} = 1 \mid X_0 = 1) = \sum_{k=1}^{3} \Pr(X_{99} = k \mid X_0 = 1) \Pr(X_{100} = 1 \mid X_{99} = k)$$
$$= \sum_{k=1}^{3} \Pr(X_{99} = k \mid X_0 = 1) \times \frac{1}{3}$$
$$= \frac{1}{3}.$$

Date: 17th February 2012.

MARK JERRUM

Q2 (a) [Standard definition.] The t step transition probabilities are

$$p_{ij}^{(t)} = \Pr(X_t = j \mid X_0 = i),$$

for all $i, j \in S$.

(b) [A similar example appeared in lectures.] Let the states be labelled $\{0, 1, 2, 3\}$ according to the number of balls in the first urn. Then

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} & 0 \\ 0 & \frac{2}{3} & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- (c) [Standard definition.] A Markov chain is irreducible if, for all i, j ∈ S, there exists t such that p^(t)_{ij} > 0. There are transitions with non-zero probability 0 → 1 → 2 → 3 and 3 → 2 → 1 → 0, so it is possible to go from any state to any other in at most 3 transitions.
- (d) [Easy calculation.]

$$w_{0} = \frac{1}{3}w_{1},$$

$$w_{1} = w_{0} + \frac{2}{3}w_{2},$$

$$w_{2} = \frac{2}{3}w_{1} + w_{3}, \text{ and}$$

$$w_{3} = \frac{1}{3}w_{2}.$$

Thus $\boldsymbol{w} = (1,3,3,1)w_0$. For \boldsymbol{w} to be a probability distribution, $w_0 = \frac{1}{8}$. Thus $\boldsymbol{w} = (\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8})$ is an equilibrium distribution.

(e) [Standard fact from the course.] Every irreducible Markov chain has a unique equilibrium distribution, so the vector \boldsymbol{w} from part (d) is unique.

- Q3 (a) [Standard definition.] $f_{ii} = \sum_{t=1}^{\infty} f_{ii}^{(t)}$, where $f_{ii}^{(t)} = \Pr(X_t = i, X_{t-1} \neq i, \dots, X_1 \neq i \mid X_0 = i)$. State *i* is recurrent iff $f_{ii} = 1$.

 - (b) [Standard result from the course.] State *i* is recurrent iff ∑_{t=1}[∞] p_{ii}^(t) = ∞.
 (c) [Bookwork.] Since ∑_{k=0}²ⁿ (²ⁿ_k) = 2²ⁿ, the average of the coefficients (²ⁿ_k) taken over 0 ≤ k ≤ 2n is 2²ⁿ/(2n + 1). Now the largest of these binomial coefficients is (²ⁿ_k) so it follows

that $\binom{2n}{n} \ge 2^{2n}/(2n+1)$. There are $\binom{2n}{n}$ possible ways to choose such a sequence of transitions, and *n* decreasing. There are $\binom{2n}{n}$ possible ways to choose such a sequence of transitions. Each such sequence has a probability 2^{-2n} of occurring. Thus

$$p_{00}^{(2n)} = \binom{2n}{n} 2^{-2n} \ge \frac{2^{2n}}{2n+1} \times 2^{-2n} = \frac{1}{2n+1}.$$

Now

$$\sum_{t=1}^{\infty} p_{00}^{(t)} \ge \sum_{n=1}^{\infty} p_{00}^{(2n)} \ge \sum_{n=1}^{\infty} \frac{1}{2n+1} \ge \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n+1} = \infty.$$

By part (b), state 0 is recurrent.

(d) [Unseen.] The communicating classes are $\{0\}$, $\{1, 2, 3, \ldots\}$ and $\{-1, -2, -3, \ldots\}$. (State 0) is absorbing, so the Markov chain cannot escape or pass through it.) $\{0\}$ is clearly recurrent. State 1 is transient since $f_{11} \leq \frac{1}{2} < 1$, so the communicating class $\{1, 2, 3, \ldots\}$ is transient, as transience is a class property. The communicating class $\{-1, -2, -3, \ldots\}$ is transient, by symmetry.

Q4 (a) [Standard fact.] $X(t) \sim Po(\lambda t)$.

(b) [Special case of a result from the course.]

$$\begin{aligned} \Pr(X(t) = k \mid X(2t) = n) &= \frac{\Pr(X(t) = k, X(2t) = n)}{\Pr(X(2t) = n)} \\ &= \frac{\Pr(X(t) - X(0) = k) \Pr(X(2t) - X(t) = n - k)}{\Pr(X(2t) - X(0) = n)} \\ &= \frac{\left[e^{-\lambda t} (\lambda t)^k / k!\right] \times \left[e^{-\lambda t} (\lambda t)^{n-k} / (n-k)!\right]}{e^{-2\lambda t} (2\lambda t)^n / n!} \\ &= \binom{n}{k} 2^{-n}. \end{aligned}$$

So conditioned on X(2t) = n, $X(t) \sim Bin(n, \frac{1}{2})$.

- (c) [Routine calculations, such as the students have sen before.] Let A(t) and B(t) be the Poisson processes representing the goals scored by the two teams.
 - (i) $B(\frac{3}{2}) B(0) \sim Po(\frac{3}{2})$, so the expected number is $\frac{3}{2}$. (ii) $(\Lambda(3))$ 1 (3) (3)1) D(4(3))(1) D (4(3) - 4(3))

$$\begin{aligned} \Pr(A(\frac{3}{4}) &= 1, A(\frac{3}{2}) - A(\frac{3}{4}) = 1) = \Pr(A(\frac{3}{4}) = 1) \Pr(A(\frac{3}{2}) - A(\frac{3}{4}) = 1) \\ &= \frac{3}{2}e^{-\frac{3}{2}} \times \frac{3}{2}e^{-\frac{3}{2}} \\ &= \frac{9}{4}e^{-3}. \end{aligned}$$

(iii) $A(\frac{3}{2}) + B(\frac{3}{2}) \sim \text{Po}(3 \times \frac{3}{2}) = \text{Po}(\frac{9}{4})$ (superposition of two Poisson processes). (d) [Unseen.] The half-time score must have been 1–0 to B. So the required probability is $\Pr(A(\frac{3}{4}) = 0 \mid A(\frac{3}{2}) = 3) \Pr(B(\frac{3}{4}) = 1 \mid B(\frac{3}{2}) = 1) = (\frac{1}{2})^3 \times \frac{1}{2} = \frac{1}{16},$

- Q5 (a) [Standard definition.] An $M(\lambda)/M(\mu)/1$ queueing system has a single queue, arrivals forming a Po(λ) process, and service times distributed Exp(μ).
 - (b) [Bookwork.] The appropriate parameters are $\lambda_0, \lambda_1, \lambda_2, \dots = \lambda$ (in time interval (t, t + h] the probability on an arrival is $\lambda h + o(h)$), and $\mu_0 = 0$ and $\mu_1 = \mu_2 = \dots = \mu$ (in time interval (t, t + h] the probability on a departure is $\mu h + o(h)$, provided the queue is non-empty).
 - (c) [Bookwork.] According to the fact given in the question, $w_j = (\lambda/\mu)^j w_0$, for $j \ge 0$. For a limiting distribution we need $\sum_{j=0}^{\infty} w_j = 1$, i.e.,

$$w_0 \sum_{j=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^j = 1.$$

If $\lambda < \mu$ then the geometric series converges to $\mu/(\mu - \lambda)$, and hence $w_0 = 1 - \lambda/\mu$. In this case there is a limiting distribution given by

$$\Pr(Q(t) = j) \to w_j = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^j.$$

The limiting distribution of Q(t) is essentially geometric; specifically $Q(t) + 1 \sim \text{Geom}(1 - \lambda/\mu)$.

(d) [Unseen, though equivalent to an $M(\lambda)/M(\mu)/\infty$ queueing system.] The appropriate parameters are $\lambda_0, \lambda_1, \lambda_2, \dots = \lambda$ (in time interval (t, t+h] the probability on a arrival is $\lambda h + o(h)$), and $\mu_0 = 0$ and $\mu_1 = \mu$, $\mu_2 = 2\mu$, $\mu_3 = 3\mu$, etc. (in time interval (t, t+h] the probability of a death is $k\mu h + o(h)$, where k is the current population). For a limiting distribution we need $\sum_{j=0}^{\infty} w_j = 1$, i.e.,

$$w_0 \sum_{j=0}^{\infty} \frac{1}{j!} \left(\frac{\lambda}{\mu}\right)^j = 1.$$

Thus $w_0 = \exp(-\lambda/\mu)$ and there is always a limiting distribution, namely $\operatorname{Po}(\lambda/\mu)$.