MAS309 Coding Theory: Sheet 8

Please send comments and corrections to M. Jerrum@qmul.ac.uk. Put solutions in the orange box on the ground floor by 17:00 on 31st March.

- 1. Write out the parity-check matrix for Ham(4, 2), in which column j gives the binary representation of the number j. Use this to decode the word 100111000011111. [4]
- 2. (a) Use the Gilbert-Varshamov bound to show that a ternary [7, 2, 5]-code exists. [2]
 - (b) Using one of the standard upper bounds on $A_3(n, d)$, show that no ternary [7, 3, 5]-code exists. [3]
 - (c) Suppose n, r, d and q satisfy the inequality in the statement of the Gilbert-Varshamov bound. The proof of the bound presented in the lectures/notes provides a method for constructing, column by column, a parity-check matrix for a [n, n − r, d]-code over F_q. Use this method to construct a parity check matrix H for the [7, 2, 5]-code of part (a). [4] Hint: Try looking for a parity-check matrix in standard form. Then you'll have five

Hint: Try looking for a parity-check matrix in standard form. Then you'll have five of the seven columns for free!

- 3. (a) Suppose r ≥ 1 and q is a prime power. What is the largest number n_{r,q} for which the Gilbert-Varshamov bound guarantees the existence of a [n, n − r, 3]-code over F_q, with n = n_{r,q}?
 - (b) Verify that $n_{r,q}$ is equal to the length of the Hamming code Ham(r,q). [1]
 - (c) The proof of the Gilbert-Varshamov bound presented in the lectures/notes is constructive. Consider the parity-check matrix H for a [n, n - r, 3]-code constructed according to that proof, when $n = n_{r,q}$. Demonstrate that H is the parity check matrix for $\operatorname{Ham}(r,q)$ up to permutation of columns, and multiplication of columns by non-zero elements of \mathbb{F}_q . [3]
- 4. (a) Compute the Singleton bound for $A_7(8,5)$.
 - (b) Write down a parity check matrix H for a linear [8, k, 5]-code over \mathbb{F}_7 that achieves the bound from part (a). [3]

[1]

(c) Compute the syndrome for the word 11111111 $\in \mathbb{F}_7^8$, given your parity-check matrix *H* from part (b). [1]

Solutions

1.

,

To decode 100111000011111, we calculate the syndrome

$$(100111000011111) \left(\begin{array}{c} 0001\\ 0010\\ 0011\\ 0100\\ 0101\\ 0110\\ 0111\\ 1000\\ 1001\\ 1010\\ 1011\\ 1100\\ 1101\\ 1110\\ 1111 \end{array} \right) = (1101).$$

This is the binary representation of the number 13, so we change the thirteenth symbol of 100111000011111 to get 100111000011011.

2. (a) In this instance, n = 7, r = n - k = 7 - 2 = 5, d = 5 and q = 3. The left-hand side of (*) in Theorem 6.10 evaluates to

$$\binom{7-1}{0} + (3-1)\binom{7-1}{1} + (3-1)^2\binom{7-1}{2} + (3-1)^3\binom{7-1}{3}$$

= $\binom{6}{0} + 2\binom{6}{1} + 2^2\binom{6}{2} + 2^3\binom{6}{3}$
= $1 + 2 \times 6 + 4 \times 15 + 8 \times 20$
= $1 + 12 + 60 + 160$
= $233.$

Since the right-hand side of (*) is $3^5 = 243$, the Gilbert-Varshamov bound is satisfied. So a ternary [7, 2, 5] code does exist.

(b) Use the Hamming (sphere-packing bound). We are interested in the existence of a code of minimum distance 5: such a code must be 2-error correcting (p.2 of the course notes). The number V of words in sphere of radius 2 is

$$V = \binom{n}{0} + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 = 1 + 7 \times 2 + 21 \times 4 = 99.$$

So the Hamming bound (Thm 2.6) is $\lfloor q^n/V \rfloor = \lfloor 2187/99 \rfloor = 22$. Now a ternary [7,3,5]-code would have $q^k = 3^3 = 27$ codewords, which exceeds the Hamming bound. So no such code exists.

(c) Following the hint, look for a parity-check matrix of the form:

$$H = \begin{pmatrix} h_{11} & h_{12} & 10000 \\ h_{21} & h_{22} & 01000 \\ h_{31} & h_{32} & 00100 \\ h_{41} & h_{42} & 00010 \\ h_{51} & h_{52} & 00001 \end{pmatrix}$$

We need to choose the column vectors $h_{\cdot 1} = (h_{11}, h_{21}, h_{31}, h_{41}, h_{51})^T$ and $h_{\cdot 2} = (h_{12}, h_{22}, h_{32}, h_{42}, h_{52})^T$ so that any four columns chosen from H are linearly independent. What to we require of $h_{\cdot 1}$ and $h_{\cdot 2}$? Firstly, they must both contain at least four non-zero entries (otherwise they would be linearly dependent on three of the existing columns). And every non-trivial linear combination of $h_{\cdot 1}$ and $h_{\cdot 2}$ must contain at least three non-zero entries (otherwise there would be a linear dependency with two of the existing columns). Those are the only constraints. A possible choice for the two undetermined columns is:

$$H = \begin{pmatrix} 0110000\\1101000\\2100100\\1100010\\2100001 \end{pmatrix}$$

3. (a) The Gilbert-Varshamov bound asserts that a [n, n - r, d]-code exists if

$$\binom{n-1}{0}(q-1)^0 + \dots + \binom{n-1}{d-2}(q-1)^{d-2} < q^r,$$

i.e., since d = 3,

$$\binom{n-1}{0}(q-1)^0 + \binom{n-1}{1}(q-1) < q^r.$$

Simplifying, $1+(n-1)(q-1) < q^r$ or $n-1 < (q^r-1)/(q-1)$. The last inequality is equivalent to $n \le (q^r-1)/(q-1)$, since both sides are integers. Thus the largest value of n for which a [n, n-r, d]-code is guaranteed to exist is $n_{r,q} = (q^r - 1)/(q-1)$.

(b) From the notes, $(q^r - 1)/(q - 1)$ is also the length of the Hamming code $\operatorname{Ham}(r, q)$.

- (c) The construction in the proof of the G-V bound forms a matrix H by adding columns h_1^T, \ldots, h_n^T in sequence, subject only to the constraint that no linearly dependent set of at most d 1 = 2 columns is ever created. Equivalently, it allows column h_i to be added if (a) $h_i \neq 0$ and (b) $h_i \neq \lambda h_j$ for all $\lambda \in \mathbb{F}_q \setminus \{0\}$ and $1 \leq j < i$. Recall the equivalence relation \equiv from the notes. We may write (b) as: $h_i \neq h_j$ for all $1 \leq j < i$. Thus the G-V construction will select one representative (arbitrarily) from each equivalence class under \equiv except for the singleton class containing the zero vector. But this is exactly the rule for constructing the parity-check matrix of $\operatorname{Ham}(r,q)$. (The order in which equivalence classes are considered is arbitrary, as is the representative chosen from each equivalence class. But we may bring H to a canonical form by column permutations and column scalings.)
- 4. (a) $A_7(8,5) \le A_7(7,4) \le \dots \le A_7(4,1) = 7^4$.
 - (b) We use the MDS code from the notes. If we are to achieve the bound from (a) we need k = 4, and hence r = n k = 8 4 = 4. The required parity check matrix is

/1	1	1	1	1	1	1	0)	
0	1	2	3	4	5	6	0	
0	1	4	2	2	4	1	0	•
0)	1	1	6	1	6	6	1/	

(The first seven columns are obtained by taking powers $1, \lambda^1, \lambda^2, \lambda^3$ of all field elements $\lambda \in \mathbb{F}_7$.)

(c) The syndrome is S(11111111) = 0001 (independent of the ordering of the columns of H).