MAS309 Coding Theory: Sheet 7

Please send comments and corrections to M. Jerrum@qmul.ac.uk.
Put solutions in the orange box on the ground floor by 17:00 on 17th March.

1. Let \mathcal{C} be the $[4,2]$-code over \mathbb{F}_{3} with generator matrix

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 2 \tag{1}\\
0 & 1 & 1 & 2
\end{array}\right) .
$$

(a) Using Lemma 5.7, write down a parity-check matrix H for \mathcal{C} in standard form.
(b) Compute the syndromes $S(u)$ and $S(v)$ of $u=0211$ and $v=1220$. What can you deduce from a comparison of $S(u)$ and $S(v)$?
(c) Compute a syndrome look-up table for \mathcal{C}. (Probably the easiest way is to compute syndromes for words of weight 1 , and then fill in any gaps in the table "by inspection".)
(d) Use the syndrome look-up table to decode u and v.
2. Demonstrate that $A_{2}(32,4)=2^{26}$. (I.e., that the maximum number of words in a binary code of length 32 and minimum distance 4 is precisely 67108864 .)
3. (a) The Hamming code $\operatorname{Ham}(2,7)$ is a linear $[n, k, d]$-code over \mathbb{F}_{7}. What are n, k and d ?
(b) Write down a parity-check matrix H for the $\operatorname{Hamming}$ code $\operatorname{Ham}(2,7)$. (To ensure we all have the same matrix in mind, adopt the following conventions: (i) the first non-zero entry in each column is 1 ; (ii) the columns, viewed as base- 7 numbers, appear in increasing order.)
(c) Construct a partial syndrome look-up table, just for the coset leaders 00000000, $00000001,0000010,00000100$ up to 10000000 (i.e., all words of weight at most 1 composed of 0 s and 1 s . (There are 49 syndromes in all, so I'm not asking for the whole table!)
(d) Find the syndrome of $u=21063435$, and use it to decode u. (If the syndrome is not in your partial look-up table, try doing the calculation again!)
(e) Find the syndrome of $v=21064435$. Observe that if coset leader $0 \ldots 010 \ldots 0$ has syndrome y, then coset leader $0 \ldots 0 \lambda 0 \ldots 0$ has syndrome λy. Hence decode v.
4. Let $\mathcal{H}=\operatorname{Ham}(r, 3)$ for a positive integer r, and let $n=\left(3^{r}-1\right) / 2$. Recall that \mathcal{H} is a perfect 1 -error-correcting code, which means that for every $w \in \mathbb{F}_{3}^{n}$, there is a unique $v \in \mathcal{H}$ such that $d(v, w) \leqslant 1$.
(a) Suppose w is a word in \mathbb{F}_{3}^{n} of weight 2 . Show that there is a unique codeword $v \in \mathcal{H}$ of weight 3 such that $d(v, w)=1$.
(b) If v is a word in \mathbb{F}_{3}^{n} of weight 3 , show that there are exactly three words $w \in \mathbb{F}_{3}^{n}$ of weight 2 such that $d(v, w)=1$.
(c) How many words of weight 2 are there in \mathbb{F}_{3}^{n} ?
(d) How many words of weight 3 are there in \mathcal{H} ?

Solutions

1. (a) From Lemma 5.7,

$$
H=\left(\begin{array}{llll}
2 & 2 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

is a parity-check matrix for \mathcal{C}.
(b)

$$
S(u)=u H^{T}=20 \quad \text { and } \quad S(v)=v H^{T}=20 .
$$

Since $S(u)=S(v)$, the words u and v are in the same coset.
The syndrome look-up table is:

$$
\begin{aligned}
& 00 \rightarrow 0000 \\
& 01 \rightarrow 0001 \\
& 02 \rightarrow 0002 \\
& 10 \rightarrow 0010 \\
& 11 \rightarrow 0011 \quad(\text { or } 0120 \text { or } 0202 \text { or } 1020 \text { or } 2002) \\
& 12 \rightarrow 0200 \quad(\text { or } 2000) \\
& 20 \rightarrow 0020 \\
& 21 \rightarrow 0100 \quad(\text { or } 1000) \\
& 22 \rightarrow 0022 \quad(\text { or } 0210 \text { or } 0101 \text { or } 2010 \text { or } 1001)
\end{aligned}
$$

(c) We saw that $S(u)=S(v)=20$. According to the syndrome look-up table, the corresponding coset leader is 0020 in both cases. So the decoded words are

$$
0211-0020=0221
$$

and

$$
1220-0020=1200 .
$$

(The decoding is unique, since the coset leader is uniquely defined in this instance.)
2. The Hamming code $\operatorname{Ham}(5,2)$ is a binary $\left[2^{5}-1,2^{5}-5-1,3\right]$-code, i.e., it has length $2^{5}-1=31$, size $2^{2^{5}-5-1}=2^{26}$, and minimum distance 3 . Thus $A(31,3) \geq 2^{26}$, and, since $\operatorname{Ham}(5,2)$ attains the Hamming bound, $A(31,3)=2^{26}$. Then, by Theorem 2.3, $A(32,4)=2^{26}$.
3. (a)

$$
\begin{aligned}
& n=\left(q^{r}-1\right) /(q-1)=\left(7^{2}-1\right) /(7-1)=48 / 6=8, \\
& k=n-r=8-2=6, \quad \text { and } \\
& d=3
\end{aligned}
$$

(b)

$$
H=\binom{01111111}{10123456}
$$

(c)

$$
\begin{aligned}
& 00 \rightarrow 00000000 \\
& 16 \rightarrow 00000001 \\
& 15 \rightarrow 00000010 \\
& 14 \rightarrow 00000100 \\
& 13 \rightarrow 00001000 \\
& 12 \rightarrow 00010000 \\
& 11 \rightarrow 00100000 \\
& 10 \rightarrow 01000000 \\
& 01 \rightarrow 10000000
\end{aligned}
$$

(d) Syndrome is $S(u)=u H^{T}=10$, so the decoding is $u-01000000=20063435$.
(e) Syndrome is $S(v)=v H^{T}=23=2 \times 15$, so the decoding is $v-2 \times 00000020=$ 21064415.
4. (a) There is exactly one word $v \in \mathcal{H}$ such that $d(v, w) \leqslant 1$. This implies that the weight of v is 1,2 or 3 . Hence the weight of v equals $3: \mathcal{H}$ has minimum dstance 3 , so has no codewords of weight 1 or 2 . In particular, $v \neq w$, so $d(v, q)=1$.
(b) We obtain w from v by changing one symbol, and since the weight of w is less than the weight of v, we must change a non-zero symbol into zero. There are three different non-zero symbols in v we could choose to change, so there are three possible $w \mathrm{~s}$. For example, if $v=0121$, then the possible w s are 0021, 0101, 0120.
(c) There are exactly $4\binom{n}{2}$ words of weight 2 : we choose a word of weight 2 by choosing which two positions will contain the non-zero symbols ($\binom{n}{2}$ choices), and then we choose what each of those symbols will be (2 choices for each).
(d) By part (a) we can define a function

$$
f:\{\text { words of weight } 2\} \longrightarrow\{\text { codewords of weight } 3\}
$$

by sending a word w to the unique codeword v such that $d(v, w)=1$. By part (b) this is a three-to-one function, i.e. for every codeword v of weight 3 , there are exactly three words w such that $f(w)=v$. This means that the number of words of weight 2 is three times the number of codewords of weight 3 , so

$$
\text { no. of codewords of weight } 3=\frac{\text { no. of words of weight } 2}{3}=\frac{4\binom{n}{2}}{3} .
$$

