MAS309 Coding Theory: Sheet 6

Please send comments and corrections to M. Jerrum@qmul.ac.uk.
Put solutions in the orange box on the ground floor by 17:00 on 10th March.

1. Suppose \mathcal{C} is a linear $[4, k]$-code over \mathbb{F}_{2} such that $\mathcal{C}=\mathcal{C}^{\perp}$.
(a) Show that $k=2$.
(b) Show that every word in \mathcal{C} has even weight.
(c) Show that \mathcal{C} contains at least two words of weight 2 .
(d) Show that \mathcal{C} is one of the codes

$$
\begin{align*}
& \{0000,0011,1100,1111\}, \\
& \{0000,0101,1010,1111\}, \quad \text { or } \\
& \{0000,0110,1001,1111\} . \tag{2}
\end{align*}
$$

2. Let \mathcal{C} be the binary $[5,3]$-code with generator matrix

$$
G=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

(a) Write down a generator matrix H for \mathcal{C}^{\perp}, the code dual to \mathcal{C}. (Note that G cannot be reduced to standard form using just row operations, so Lemma 5.7 is not applicable here.) Verify that H is a parity-check matrix for \mathcal{C} by appealing to Lemma 5.6. [3]
(b) Consider $\mathcal{D}=\mathcal{C} \cap \mathcal{C}^{\perp}$. Since \mathcal{D} is the intersection of linear subspaces of \mathbb{F}_{2}^{5}, it is itself a linear [$5, k$]-code for some k. What is k ? Write down a generator matrix for \mathcal{D}. Briefly justify your answer.
(c) Is $\mathcal{C} \cup \mathcal{C}^{\perp}$ a linear code? Briefly justify your answer.
3. Suppose \mathcal{C} is a binary $[n, k]$-code with generator matrix G, and that H is a generator matrix for the dual code \mathcal{C}^{\perp}. Let $H_{* 1}, \ldots, H_{* n}$ be an enumeration of the columns of H.
(a) Prove that if \mathcal{C} has minimum distance 1 then there exists i such that $H_{* i}$ is the zero vector.
[3]
(b) Prove that if \mathcal{C} has minimum distance 2 then there exist distinct i, j such that $H_{* i}=$ $H_{* j}$.

Remark. (a) and (b) tell us that if we have a matrix H with no zero columns and no repeated columns, then H is a parity-check matrix of a code with minimum distance at least 3 .
4. Let \mathcal{C} be the linear $[6,3]$-code over \mathbb{F}_{5} with generator matrix

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 0 & 0 \\
0 & 1 & 0 & 2 & 2 & 4 \\
1 & 2 & 4 & 2 & 1 & 3
\end{array}\right) .
$$

(a) By applying the matrix row-operations $\mathrm{MO} 1-3$, put this matrix in standard form, i.e., find a standard-form generator matrix G for the code \mathcal{C}. (Note that it is not necessary to use the column operations MO4,5, so the resulting standard-form matrix is for \mathcal{C} itself, not merely a code equivalent to \mathcal{C}.)
(b) Write down a parity-check matrix for \mathcal{C}.
(c) Find the syndromes of the words 220121 and 020241.

Solutions

1. (a) \mathcal{C} is a $[4,4-k]$-code, so if $\mathcal{C}^{\perp}=\mathcal{C}$ then $4-k=k$, i.e. $k=2$.
(b) If $v \in \mathcal{C}$ then $v \in \mathcal{C}^{\perp}$, and so we must have $v . v=0$. Now $v . v=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}$, and this equals $v_{1}+v_{2}+v_{3}+v_{4}$, since $0^{2}=0$ and $1^{2}=1$. So $v . v=0$ implies that v contains an even number of 1 s .
(c) \mathcal{C} contains 4 words, by Lemma 4.5, and each of these has weight 0,2 or 4 . There is only one word in \mathbb{F}_{2}^{4} of weight 0 , and only one of weight 4 , so there are at least two words in \mathcal{C} of weight 2 .
(d) Let v, w be two words of weight 2 in \mathcal{C}. This means that v and w are two of the following words:

$$
0011,0101,0110,1001,1010,1100 .
$$

Since $w \in \mathcal{C}^{\perp}$ we must have $v . w=0$, and by checking the products of all pairs of the above words, we find that $\{v, w\}$ must be $\{0011,1100\},\{0101,1010\}$ or $\{0110,1001\}$. In any of these cases, we find that $v+w=1111$, and so \mathcal{C} must be one of the codes listed.
2. (a) One possibility is

$$
H=\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

(I did this "by inspection". As a last resort, one could enumerate all words in the dual code, since there are just four of them.)
Verification: The rows of H are clearly independent, and

$$
G H^{\perp}=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right) \times\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Thus the two conditions of lemma 5.6 are satisfied.
(b) The only non-zero vector that is in the row spaces of both G and H is 11011. Thus the dimension of \mathcal{D} is $k=1$, and
is its (unique) generator matrix.
(c) $\mathcal{C} \cup \mathcal{C}^{\perp}$ has

$$
\left|\mathcal{C} \cup \mathcal{C}^{\perp}\right|=|\mathcal{C}|+\left|\mathcal{C}^{\perp}\right|-\left|\mathcal{C} \cap \mathcal{C}^{\perp}\right|=|\mathcal{C}|+\left|\mathcal{C}^{\perp}\right|-|\mathcal{D}|=8+4-2=10
$$

codewords. But the number of codewords in any binary linear code is a power of 2 .
3. (a) Since \mathcal{C} has minimum distance 1 , it contains a codeword v of weight 1 . Suppose v has its unique 1 in position i. Let $w=w_{1} \ldots w_{n} \in \mathcal{C}^{\perp}$ be any codeword in the dual code. Since $v \cdot w=0$, we have $w_{i}=0$. This is so for any codeword in \mathcal{C}^{\perp}, and in particular for the rows of H. So $H_{* i}=0$.
(b) Since \mathcal{C} has minimum distance 2 , it contains a codeword v of weight 2 . Suppose v has 1 s in positions i and j. Let $w=w_{1} \ldots w_{n} \in \mathcal{C}^{\perp}$ be any codeword in the dual code. Since $v \cdot w=0$, we have $w_{i}+w_{j}=0$; equivalently, $w_{i}=w_{j}$ since we are working in \mathbb{F}_{2}. This is so for any codeword in \mathcal{C}^{\perp}, and in particular for the rows of H. So $H_{* i}+H_{* j}=0$.
4. (a) Subtract row 1 from row 3 (equivalently, add 4 times row 1 to row 3):

$$
\left(\begin{array}{l}
123400 \\
010224 \\
001313
\end{array}\right)
$$

Now add 3 times row 2 to row 1:

$$
\left(\begin{array}{l}
103012 \\
010224 \\
001313
\end{array}\right)
$$

Finally add twice row 3 to row 1 :

$$
\left(\begin{array}{l}
100133 \\
010224 \\
001313
\end{array}\right)
$$

The resulting generator matrix for \mathcal{C} is in standard form.
(b) By Lemma 5.7, the parity-check matrix is

$$
H=\left(\begin{array}{l}
432100 \\
234010 \\
212001
\end{array}\right)
$$

(c) The syndromes are

$$
S(220121)=220121 H^{T}=022 \quad S(010241)=010241 H^{T}=022
$$

