MAS309 Coding Theory: Sheet 6

Please send comments and corrections to M. Jerrum@qmul.ac.uk. Put solutions in the orange box on the ground floor by 17:00 on 10th March.

- 1. Suppose C is a linear [4, k]-code over \mathbb{F}_2 such that $C = C^{\perp}$.
 - (a) Show that k = 2. [1]
 - (b) Show that every word in C has even weight. [2]
 - (c) Show that C contains at least two words of weight 2. [1]
 - (d) Show that \mathcal{C} is one of the codes

2. Let C be the binary [5,3]-code with generator matrix

$$G = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

- (a) Write down a generator matrix H for C[⊥], the code dual to C. (Note that G cannot be reduced to standard form using just row operations, so Lemma 5.7 is not applicable here.) Verify that H is a parity-check matrix for C by appealing to Lemma 5.6. [3]
- (b) Consider D = C ∩ C[⊥]. Since D is the intersection of linear subspaces of F₂⁵, it is itself a linear [5, k]-code for some k. What is k? Write down a generator matrix for D. Briefly justify your answer. [2]
- (c) Is $C \cup C^{\perp}$ a linear code? Briefly justify your answer. [2]
- 3. Suppose C is a binary [n, k]-code with generator matrix G, and that H is a generator matrix for the dual code C^{\perp} . Let H_{*1}, \ldots, H_{*n} be an enumeration of the columns of H.
 - (a) Prove that if C has minimum distance 1 then there exists i such that H_{*i} is the zero vector. [3]
 - (b) Prove that if C has minimum distance 2 then there exist distinct i, j such that $H_{*i} = H_{*j}$. [2]

Remark. (a) and (b) tell us that if we have a matrix H with no zero columns and no repeated columns, then H is a parity-check matrix of a code with minimum distance at least 3.

[Continued overleaf.]

4. Let C be the linear [6,3]-code over \mathbb{F}_5 with generator matrix

$$\begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 2 \ 2 \ 4 \\ 1 \ 2 \ 4 \ 2 \ 1 \ 3 \end{pmatrix}.$$

- (a) By applying the matrix row-operations MO1–3, put this matrix in standard form, i.e., find a standard-form generator matrix G for the code C. (Note that it is not necessary to use the column operations MO4,5, so the resulting standard-form matrix is for C itself, not merely a code equivalent to C.) [3]
- (b) Write down a parity-check matrix for C. [2]
- (c) Find the syndromes of the words 220121 and 020241. [2]

Solutions

- 1. (a) C is a [4, 4-k]-code, so if $C^{\perp} = C$ then 4-k = k, i.e. k = 2.
 - (b) If $v \in C$ then $v \in C^{\perp}$, and so we must have v.v = 0. Now $v.v = v_1^2 + v_2^2 + v_3^2 + v_4^2$, and this equals $v_1 + v_2 + v_3 + v_4$, since $0^2 = 0$ and $1^2 = 1$. So v.v = 0 implies that v contains an even number of 1s.
 - (c) C contains 4 words, by Lemma 4.5, and each of these has weight 0, 2 or 4. There is only one word in \mathbb{F}_2^4 of weight 0, and only one of weight 4, so there are at least two words in C of weight 2.
 - (d) Let v, w be two words of weight 2 in C. This means that v and w are two of the following words:

0011, 0101, 0110, 1001, 1010, 1100.

Since $w \in C^{\perp}$ we must have v.w = 0, and by checking the products of all pairs of the above words, we find that $\{v, w\}$ must be $\{0011, 1100\}$, $\{0101, 1010\}$ or $\{0110, 1001\}$. In any of these cases, we find that v + w = 1111, and so C must be one of the codes listed.

2. (a) One possibility is

$$H = \begin{pmatrix} 0 \ 0 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 0 \ 0 \end{pmatrix}.$$

(I did this "by inspection". As a last resort, one could enumerate all words in the dual code, since there are just four of them.)

Verification: The rows of H are clearly independent, and

$$GH^{\perp} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus the two conditions of lemma 5.6 are satisfied.

(b) The only non-zero vector that is in the row spaces of both G and H is 11011. Thus the dimension of \mathcal{D} is k = 1, and

is its (unique) generator matrix.

(c) $\mathcal{C} \cup \mathcal{C}^{\perp}$ has

$$|\mathcal{C} \cup \mathcal{C}^{\perp}| = |\mathcal{C}| + |\mathcal{C}^{\perp}| - |\mathcal{C} \cap \mathcal{C}^{\perp}| = |\mathcal{C}| + |\mathcal{C}^{\perp}| - |\mathcal{D}| = 8 + 4 - 2 = 10$$

codewords. But the number of codewords in any binary linear code is a power of 2.

- 3. (a) Since C has minimum distance 1, it contains a codeword v of weight 1. Suppose v has its unique 1 in position i. Let w = w₁...w_n ∈ C[⊥] be any codeword in the dual code. Since v ⋅ w = 0, we have w_i = 0. This is so for any codeword in C[⊥], and in particular for the rows of H. So H_{*i} = 0.
 - (b) Since C has minimum distance 2, it contains a codeword v of weight 2. Suppose v has 1s in positions i and j. Let w = w₁...w_n ∈ C[⊥] be any codeword in the dual code. Since v ⋅ w = 0, we have w_i + w_j = 0; equivalently, w_i = w_j since we are working in F₂. This is so for any codeword in C[⊥], and in particular for the rows of H. So H_{*i} + H_{*j} = 0.
- 4. (a) Subtract row 1 from row 3 (equivalently, add 4 times row 1 to row 3):

$$\begin{pmatrix} 123400\\ 010224\\ 001313 \end{pmatrix}.$$

Now add 3 times row 2 to row 1:

$$\begin{pmatrix} 103012\\ 010224\\ 001313 \end{pmatrix}$$

Finally add twice row 3 to row 1:

$$\begin{pmatrix} 100133\\ 010224\\ 001313 \end{pmatrix}$$

The resulting generator matrix for C is in standard form.

(b) By Lemma 5.7, the parity-check matrix is

$$H = \begin{pmatrix} 432100\\ 234010\\ 212001 \end{pmatrix}.$$

(c) The syndromes are

$$S(220121) = 220121 H^T = 022$$
 $S(010241) = 010241 H^T = 022$