MAS309 Coding Theory: Sheet 2

Please send comments and corrections to M. Jerrum@qmul. ac.uk.
Put solutions in the orange box on the ground floor by 17:00 on Monday, 28th January.

1. Let $\mathbb{A}=\{0,1,2\}$, and

$$
\begin{equation*}
\mathcal{C}=\{000,111,202,220\}, \quad \mathcal{D}=\{000,012,120,210\} \tag{4}
\end{equation*}
$$

Is \mathcal{C} equivalent to \mathcal{D} ?
(Hint: Use Lemmas 1.5 and 1.8.)
2. In this question, we work with the binary alphabet $\mathbb{A}=\{0,1\}$. Write 0^{r} to indicate a string of $r 0 \mathrm{~s}$, and similarly 1^{r}.
(a) Suppose n is a positive integer, and u, v, w are words of length n over \mathbb{A}. Prove that

$$
\begin{equation*}
d(u, v)+d(u, w)+d(v, w) \leqslant 2 n \tag{3}
\end{equation*}
$$

(Hint: Write the three distances as $d(u, v)=\sum_{i=1}^{n} \delta\left(u_{i}, v_{i}\right)$, etc., where $\delta(a, b)=1$ if $a \neq b$, and $\delta(a, a)=0$. What can you say about $\delta\left(u_{i}, v_{i}\right)+\delta\left(u_{i}, w_{i}\right)+\delta\left(v_{i}, w_{i}\right)$?)
(b) Prove that if \mathcal{C} is a binary (n, M, d)-code with $3 d>2 n$, then $M \leqslant 2$.
(c) Now suppose $3 d \leq 2 n$ and that d is even. By calculating the distance between each pair of words, show that

$$
\begin{equation*}
\mathcal{C}=\left\{0^{n}, 0^{d / 2} 1^{n-d / 2}, 1^{d / 2} 0^{d / 2} 1^{n-d}, 1^{d} 0^{n-d}\right\} \tag{2}
\end{equation*}
$$

is an $(n, 4, d)$-code.
(d) At this point we have shown that if n, d are positive integers, and d is even, then $A_{2}(n, d) \neq 3$. Prove that the conclusion remains true even if we drop the condition in italics.
3. (a) What is the numerical value of the Hamming bound (Theorem 2.6) for $A_{3}(7,5)$? [2]
(b) What numerical upper bound on $A_{3}(7,5)$ do you obtain by first applying the Singleton bound (Theorem 2.8, part 1) twice, and then the Hamming bound?
(c) Finally, what numerical upper bound on $A_{3}(7,5)$ do you obtain by applying the Singleton bound four times?
4. In this question, we work with the q-ary alphabet $\mathbb{A}=\{0,1, \ldots, q-1\}$. Let $n \geqslant 2$.

Define the parity-check code of length n over \mathbb{A} to be

$$
\begin{equation*}
\mathcal{C}_{n}=\left\{v \in \mathbb{A}^{n} \mid v_{1}+v_{2}+\cdots+v_{n} \text { is divisible by } q\right\} . \tag{2}
\end{equation*}
$$

(a) Prove that the minimum distance of \mathcal{C}_{n} is 2.
(b) Suppose $x=x_{1} \ldots x_{n-1} \in \mathbb{A}^{n-1}$. Show that there is exactly one word $v=v_{1} \ldots v_{n} \in$ \mathcal{C}_{n} such that $v_{i}=x_{i}$ for $i=1, \ldots, n-1$. Deduce that there are exactly q^{n-1} words in \mathcal{C}_{n}.
(c) Deduce that $A_{q}(n, 2)=q^{n-1}$.
(Hint: use Theorem 2.9.)
A. This question is for interest only, and is not assessed. The Hamming bound gives $A_{3}(8,7) \leq$ 11. Show in fact that $A_{3}(8,7)=3$. More generally, prove that $A_{3}(n, d)=3$ whenever $5 n / 6<d \leq n$.

Solutions

1. The code \mathcal{C} contains a codeword, namely 111, that is distance 3 from each of the other three codewords. Now equivalence preserves distances (Lemmas 1.5 and 1.8), so any code equivalent to \mathcal{C} must contain a codeword with the same property. But \mathcal{D} has no such codeword. (Other arguments along the same lines are possible, e.g., \mathcal{D} contains a codeword, 000 distance 2 from all the others.
2. (a) Suppose $\delta(a, b)=\delta(a, c)=1$, i.e., $a \neq b$ and $a \neq c$. Since our alphabet has just two symbols, necessarily $b=c$. So $\delta(a, b), \delta(a, c)$ and $\delta(b, c)$ cannot all be 1 simultaneously, and $\delta(a, b)+\delta(a, c)+\delta(b, c) \leq 2$. So,

$$
d(u, v)+d(u, w)+d(v, w)=\sum_{i=1}^{n}(\delta(u, v)+\delta(u, w)+\delta(v, w)) \leq \sum_{i=1}^{n} 2=2 n
$$

(b) Choose any three distinct codewords u, v, w in \mathcal{C}. Since \mathcal{C} has minimum distance d, $d(u, v)+d(u, w)+d(v, w) \geq 3 d>2 n$. But this contradicts part (a). So $M<3$.
(c) Write

$$
\begin{aligned}
u & =0^{n}, \\
v & =0^{d / 2} 1^{n-d / 2}, \\
w & =1^{d / 2} 0^{d / 2} 1^{n-d}, \\
x & =1^{d} 0^{n-d} .
\end{aligned}
$$

Then

$$
d(u, x)=d(v, w)=d
$$

and

$$
d(u, v)=d(u, w)=d(v, x)=d(w, x)=n-d / 2 \geq 3 d / 2-d / 2=d
$$

so $\mathcal{C}=\{u, v, w, x\}$ is an $(n, 4,2 m)$-code.
(d) If d is odd, then $A_{2}(n, d)=A_{2}(n+1, d+1) \neq 3$, by Theorem 2.3
3. (a) We recall that minimum distance at least 5 is equivalent to 2-error-correcting. So we apply Hamming with $n=7$ and $t=2$ to get

$$
A_{3}(7,5) \leqslant \frac{3^{7}}{\binom{7}{0}+(3-1)\binom{7}{1}+(3-1)^{2}\binom{7}{2}}=\frac{2187}{99}
$$

which is between 22 and 23 . So $A_{3}(7,5) \leqslant 22$.
(b) Applying the Singleton bound twice:

$$
A_{3}(7,5) \leq A_{3}(6,4) \leq A_{3}(5,3)
$$

Then applying Hamming with $n=5$ and $t=1$:

$$
A_{3}(5,3) \leq \frac{3^{5}}{\binom{5}{0}+(3-1)\binom{5}{1}}=\frac{243}{11}
$$

which is between 22 and 23. Putting the two inequalities together, $A_{3}(7,5) \leq 22$. (It is an apparent concidence that this is equal to the bound from part (a).)
(c) Applying the Singleton bound four times,

$$
A_{3}(7,5) \leq A_{3}(6,4) \leq A_{3}(5,3) \leq A_{3}(4,2) \leq A_{3}(3,1)=3^{3}=27
$$

(For the first equality, see Theorem 2.1(1).)
4. (a) Suppose, to the contrary, that \mathcal{C}_{n} contains two codewords u and v such that $d(u, v)=$ 1 , i.e., such that u and v differ in exactly one position. By symmetry we may assume that $u_{i}=v_{i}$, for $1 \leq i \leq n-1$, and $u_{n} \neq v_{n}$. Now, $\sum_{i=1}^{n} u_{i}$ and $\sum_{i=1}^{n} v_{j}$ are both divisible by q and so is their difference:

$$
\left(u_{1}+u_{2}+\cdots+u_{n}\right)-\left(v_{1}+v_{2}+\cdots+v_{n}\right)=u_{n}-v_{n}=0 \quad(\bmod q) .
$$

Thus $u_{n}=v_{n}(\bmod q)$, which is only possible if $u_{n}=v_{n}$. We obtain the contradiction $u=v$.
(b) Once we fix the first $n-1$ positions of v, we know from the definition of \mathcal{C}_{n} that $v_{n}=$ $-\left(v_{1}+\cdots+v_{n-1}\right)(\bmod q)$. This fixes v_{n} uniquely, so we know there is a unique extension to v_{n}. Since there are q^{n-1} possible choices for $v_{1} \ldots v_{n-1},\left|\mathcal{C}_{n}\right|=q^{n-1}$.
(c) By Theorems 2.9 and 2.1, $A_{q}(n, 2) \leq q A_{q}(n, 1)=q^{n-1}$. And part (b) tells us that $A(n, 2) \geq q^{n-1}$.
A. By analogy with $1(a)$, show

$$
d(u, v)+d(u, w)+d(u, x)+d(v, w)+d(v, x)+d(w, x) \leq 5 n .
$$

(The alphabet is ternary, so each position must have at least one repeated symbol.) So if there are at least four codewords then the minimum distance can be at most $5 n / 6$. Of course, the repetition code achieves three codewords.

