
MAS309 Coding Theory: Sheet 2
Please send comments and corrections to M.Jerrum@qmul.ac.uk.
Put solutions in the orange box on the ground floor by 17:00 on Monday, 28th January.

1. Let A = {0, 1, 2}, and

C = {000, 111, 202, 220}, D = {000, 012, 120, 210},

Is C equivalent to D? [4]

(Hint: Use Lemmas 1.5 and 1.8.)

2. In this question, we work with the binary alphabet A = {0, 1}. Write 0r to indicate a string
of r 0s, and similarly 1r.

(a) Suppose n is a positive integer, and u, v, w are words of length n over A. Prove that

d(u, v) + d(u, w) + d(v, w) 6 2n. [3]

(Hint: Write the three distances as d(u, v) =
∑n

i=1 δ(ui, vi), etc., where δ(a, b) = 1
if a 6= b, and δ(a, a) = 0. What can you say about δ(ui, vi) + δ(ui, wi) + δ(vi, wi)?)

(b) Prove that if C is a binary (n, M, d)-code with 3d > 2n, then M 6 2. [2]

(c) Now suppose 3d ≤ 2n and that d is even. By calculating the distance between each
pair of words, show that

C = {0n, 0d/21n−d/2, 1d/20d/21n−d, 1d0n−d}

is an (n, 4, d)-code. [2]

(d) At this point we have shown that if n, d are positive integers, and d is even, then
A2(n, d) 6= 3. Prove that the conclusion remains true even if we drop the condition
in italics. [2]

3. (a) What is the numerical value of the Hamming bound (Theorem 2.6) for A3(7, 5)? [2]

(b) What numerical upper bound on A3(7, 5) do you obtain by first applying the Single-
ton bound (Theorem 2.8, part 1) twice, and then the Hamming bound? [2]

(c) Finally, what numerical upper bound on A3(7, 5) do you obtain by applying the Sin-
gleton bound four times? [2]



4. In this question, we work with the q-ary alphabet A = {0, 1, . . ., q − 1}. Let n > 2.

Define the parity-check code of length n over A to be

Cn = {v ∈ An | v1 + v2 + · · ·+ vn is divisible by q}.

(a) Prove that the minimum distance of Cn is 2. [2]

(b) Suppose x = x1 . . . xn−1 ∈ An−1. Show that there is exactly one word v = v1 . . . vn ∈
Cn such that vi = xi for i = 1, . . . , n − 1. Deduce that there are exactly qn−1 words
in Cn. [2]

(c) Deduce that Aq(n, 2) = qn−1. [2]
(Hint: use Theorem 2.9.)

A. This question is for interest only, and is not assessed. The Hamming bound gives A3(8, 7) ≤
11. Show in fact that A3(8, 7) = 3. More generally, prove that A3(n, d) = 3 whenever
5n/6 < d ≤ n.



Solutions
1. The code C contains a codeword, namely 111, that is distance 3 from each of the other

three codewords. Now equivalence preserves distances (Lemmas 1.5 and 1.8), so any
code equivalent to C must contain a codeword with the same property. But D has no
such codeword. (Other arguments along the same lines are possible, e.g., D contains a
codeword, 000 distance 2 from all the others.

2. (a) Suppose δ(a, b) = δ(a, c) = 1, i.e., a 6= b and a 6= c. Since our alphabet has
just two symbols, necessarily b = c. So δ(a, b), δ(a, c) and δ(b, c) cannot all be 1
simultaneously, and δ(a, b) + δ(a, c) + δ(b, c) ≤ 2. So,

d(u, v) + d(u, w) + d(v, w) =
n∑

i=1

(
δ(u, v) + δ(u, w) + δ(v, w)

)
≤

n∑
i=1

2 = 2n.

(b) Choose any three distinct codewords u, v, w in C. Since C has minimum distance d,
d(u, v) + d(u, w) + d(v, w) ≥ 3d > 2n. But this contradicts part (a). So M < 3.

(c) Write

u = 0n,

v = 0d/21n−d/2,

w = 1d/20d/21n−d,

x = 1d0n−d.

Then
d(u, x) = d(v, w) = d

and

d(u, v) = d(u, w) = d(v, x) = d(w, x) = n− d/2 ≥ 3d/2− d/2 = d,

so C = {u, v, w, x} is an (n, 4, 2m)-code.

(d) If d is odd, then A2(n, d) = A2(n + 1, d + 1) 6= 3, by Theorem 2.3

3. (a) We recall that minimum distance at least 5 is equivalent to 2-error-correcting. So we
apply Hamming with n = 7 and t = 2 to get

A3(7, 5) 6
37(

7
0

)
+ (3− 1)

(
7
1

)
+ (3− 1)2

(
7
2

) =
2187

99
,

which is between 22 and 23. So A3(7, 5) 6 22.



(b) Applying the Singleton bound twice:

A3(7, 5) ≤ A3(6, 4) ≤ A3(5, 3).

Then applying Hamming with n = 5 and t = 1:

A3(5, 3) ≤ 35(
5
0

)
+ (3− 1)

(
5
1

) =
243

11
,

which is between 22 and 23. Putting the two inequalities together, A3(7, 5) ≤ 22. (It
is an apparent concidence that this is equal to the bound from part (a).)

(c) Applying the Singleton bound four times,

A3(7, 5) ≤ A3(6, 4) ≤ A3(5, 3) ≤ A3(4, 2) ≤ A3(3, 1) = 33 = 27.

(For the first equality, see Theorem 2.1(1).)

4. (a) Suppose, to the contrary, that Cn contains two codewords u and v such that d(u, v) =
1, i.e., such that u and v differ in exactly one position. By symmetry we may assume
that ui = vi, for 1 ≤ i ≤ n − 1, and un 6= vn. Now,

∑n
i=1 ui and

∑n
i=1 vj are both

divisible by q and so is their difference:

(u1 + u2 + · · ·+ un)− (v1 + v2 + · · ·+ vn) = un − vn = 0 (mod q).

Thus un = vn (mod q), which is only possible if un = vn. We obtain the contradic-
tion u = v.

(b) Once we fix the first n−1 positions of v, we know from the definition of Cn that vn =
−(v1 + · · · + vn−1) (mod q). This fixes vn uniquely, so we know there is a unique
extension to vn. Since there are qn−1 possible choices for v1 . . . vn−1, |Cn| = qn−1.

(c) By Theorems 2.9 and 2.1, Aq(n, 2) ≤ q Aq(n, 1) = qn−1. And part (b) tells us that
A(n, 2) ≥ qn−1.

A. By analogy with 1(a), show

d(u, v) + d(u, w) + d(u, x) + d(v, w) + d(v, x) + d(w, x) ≤ 5n.

(The alphabet is ternary, so each position must have at least one repeated symbol.) So
if there are at least four codewords then the minimum distance can be at most 5n/6. Of
course, the repetition code achieves three codewords.


