MAS309 Coding Theory: Sheet 1

Please send comments and corrections to M. Jerrum@qmul.ac.uk.
Put solutions in the orange box on the ground floor by 17:00 on Monday, 21st January.

1. Consider the following ternary code (i.e., code over the alphabet $\mathbb{A}=\{0,1,2\}$) of length 7 :

$$
\mathcal{C}=\{0000000,0111112,1012221,1220111,2122012,2201210\}
$$

The code \mathcal{C} has minimum distance 4 .
(a) Suppose $x \in \mathcal{C}$ is a codeword, and $z \in \mathbb{A}^{7}$ a word obtained from x by changing 4 symbols. Demonstrate that \mathcal{C} is not 4 -error-detecting by finding x and z as above, such that a recipient of z cannot tell from examining z that errors have been introduced.
(b) Now suppose $x \in \mathcal{C}$ is a codeword, and $z \in \mathbb{A}^{7}$ a word obtained from x by changing 2 symbols. Demonstrate that \mathcal{C} is not 2 -error-correcting by finding x and z as above, such that a recipient of z cannot with certainty determine the codeword x just from examining z. Exhibit two possible decodings of z.
2. Given q, let A be the alphabet $\{0,1, \ldots, q-1\}$. In each of the following cases find three words a, b, c in \mathbb{A}^{n} satisfying $d(a, b)=d_{1}, d(a, c)=d_{2}, d(b, c)=d_{3}$, or prove that no such words exist. For example, with $q=2, n=3, d_{1}=d_{2}=d_{3}=2$, we could take $a=000$, $b=011, c=110$.
(a) $q=3, n=5, d_{1}=3, d_{2}=4, d_{3}=4$.
(b) $q=3, n=9, d_{1}=3, d_{2}=4, d_{3}=4$.
(c) $q=2, n=9, d_{1}=3, d_{2}=4, d_{3}=4$.
(d) $q=2, n=6, d_{1}=4, d_{2}=4, d_{3}=4$.
(e) $q=3, n=6, d_{1}=2, d_{2}=1, d_{3}=4$.
(f) $q=2, n=5, d_{1}=4, d_{2}=4, d_{3}=4$.
3. Let $\mathbb{A}=\{A, B, C\}$, and let

$$
\mathcal{C}=\{\mathrm{AAC}, \mathrm{ABC}, \mathrm{ACB}, \mathrm{BCB}\}
$$

and

$$
\mathcal{D}=\{\mathrm{AAB}, \mathrm{ABB}, \mathrm{BAA}, \mathrm{BAC}\} .
$$

Show that the codes \mathcal{C} and \mathcal{D} are equivalent.
(Hint: Find the right permutation of positions first. It is unique!)
Find the minimum distances of \mathcal{C} and \mathcal{D} and verify that they are equal.
4. Suppose $\mathbb{A}=\{0,1,2,3,4\}$, and that v and w are words of length 3 over \mathbb{A} with $d(v, w)=$ 2. Let $\mathcal{C}=\{v, w\}$. Prove that \mathcal{C} is equivalent to the code $\{000,011\}$.

Solutions

1. (a) By inspection we find that codewords 0111112 and 2122012 are distance 4 apart. (They are the unique such pair.) So choose $x=0111112$ and $z=2122012$ (or vice versa). We cannot tell from looking at z whether it is a corrupted version of 0111112 or an uncorrupted 2122012.
(b) Let $x=0111112$ as before, and let z be one of the six words that are distance 2 from both 0111112 and 2122012, say, $z=0112012$. We cannot tell from looking at z whether it is a corrupted version of 0111112 or of 2122012.
2. (a) Yes. E.g., $a=00000, b=00111, c=02222$.
(b) Yes. E.g., just pad out (a): $a=000000000, b=000000111, c=000002222$.
(c) No. Let S be the set of positions where a and b differ, and let T be the set of positions where a and c differ. Then b and c differ in positions $S \oplus T$, where \oplus denotes symmetric difference. But $|S \oplus T|=|S|+|T|-2|S \cap T|$ is odd, since $|S|$ is odd and $|T|$ is even. Contradiction.
(d) Yes. E.g., double up the illustrative example from the question: $a=000000, b=$ $001111, c=111100$.
(e) No. Violates the triangle inequality, since $4=d(b, c)>d(b, a)+d(a, c)=3$.
(f) No. Let S and T be as before. Then (since there are only two symbols available) b and c agree on positions in $S \cap T$. Now $|S \cup T| \leqslant|\{1,2,3,4,5\}|=5$, so

$$
|S \cap T|=|S|+|T|-|S \cup T| \geqslant 4+4-5=3
$$

Thus b and c agree in at least 3 places, and $d(b, c) \leqslant 5-3=2$.
3. Following the hint, we find first the appropriate permutation of positions, which is

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

This is forced by simple considerations: (a) the 1 st position of \mathcal{C} and the 2 nd of \mathcal{D} are the only ones in which two symbols spit $3: 1$ (in both cases, there are three As and one Bs) so $\sigma(2)=1$; (b) the 2 nd position of \mathcal{C} and the 3 rd of \mathcal{D} are the only ones in which all three symbols occur, so $\sigma(3)=2$; (c) then necessarily $\sigma(1)=3$. Observe that

$$
\mathcal{C}_{\sigma}=\{\mathrm{CAA}, \mathrm{CAB}, \mathrm{BAC}, \mathrm{BBC}\} .
$$

For the permutations of alphabet symbols it is easiest to begin with the 1st position. The singleton B must map to the singleton B, and A to A so the permutation we need to apply in the 2 nd position is the identity.

Consider the word BBC in \mathcal{C}_{σ}. It must map to some word of the form $* \mathrm{~B} *$ in \mathcal{D}, and ABB is the only possibility. Thus the permutation we need to apply to the 1 st position of \mathcal{C}_{σ} must map B to A and hence, by elimination, C to B. I.e., we need to apply the permutation

$$
f=\left(\begin{array}{lll}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}\right)
$$

Finally, it is now easy to check that two permutations are possible for 3rd position: either

$$
g=\left(\begin{array}{lll}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array}\right) \quad \text { or } \quad g=\left(\begin{array}{lll}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}\right)
$$

So \mathcal{C} and \mathcal{D} are equivalent, and, explicitly, $\mathcal{D}=\left(\left(\mathcal{C}_{\sigma}\right)_{f, 1}\right)_{g, 3}$.
By inspection, the minimum distance of both \mathcal{C} and \mathcal{D} is 2 .
4. From lecture notes, we know that \mathcal{C} is equivalent to a code \mathcal{C}^{\prime} containing the word 000 , and since equivalence preserves size and minimum distance of codes, we have

$$
\mathcal{C}^{\prime}=\{000, v\}
$$

where $v=0 a b, a 0 b$ or $a b 0$. for some $a, b \neq 0$. In the second case, set

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

and replace \mathcal{C}^{\prime} with $\mathcal{C}_{\sigma}^{\prime}=\{000,0 a b\}$. In the third case, do the same with

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

So in any case, \mathcal{C} is equivalent to the code $\mathcal{C}^{\prime \prime}=\{000,0 a b\}$. Now take a permutation f of A such that $f(0)=0$ and $f(a)=1$ (for example, $f(a)=1, f(1)=a, f(x)=x$ for all other x). Also take a permutation g that treats b analogously. Then \mathcal{C} is equivalent to $\left(\{000,0 a b\}_{f, 2}\right)_{g, 3}=\{000,011\}$.

