Queen Mary, University of London

B. Sc. Examination by course unit 2007

MAS309 Coding Theory

16th May, 2007
14:30

Duration: 2 hours.

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions will be counted.
Electronic calculators are not permitted.

Question 1. (a) Define the constants $A_{3}(n, d)$.
(b) Prove that $A_{3}(n, d) \leq A_{3}(n-1, d-1)$, for all $n \geq d \geq 2$.
(c) Consider the ternary "parity check code"

$$
\mathcal{C}=\left\{v_{1} v_{2} v_{3} v_{4} \in \mathbb{F}_{3}^{4}: v_{1}+v_{2}+v_{3}+v_{4}=0\right\}
$$

of length 4 . Demonstrate that \mathcal{C} has 27 codewords and minimum distance 2.
(d) Write down the Hamming ("sphere packing") bound as it applies to ternary, 1-error-correcting codes. (This is the special case $t=1$ and $q=3$.) Hence show that a ternary 1-errorcorrecting code of length 5 has at most 22 codewords.
(e) Prove that if a code has minimum distance 3, then it is 1 -error-correcting.
(f) Hence deduce that $A_{3}(5,3)<A_{3}(4,2)$.

Question 2. (a) What is meant by a binary (n, M, d)-code?
(b) Suppose \mathcal{C} is a binary (n, M, d)-code. Regard the codewords as vectors over \mathbb{F}_{2}, and define a $\binom{M}{2} \times n$ matrix D as follows: The rows of D correspond to all (unordered) pair of codewords in \mathcal{C}. The row corresponding to codewords u and v is simply the vector sum of u and v. (The ordering of the rows of D is not significant.) Write down the array D for the particular code

$$
\mathcal{C}=\{000000,001111,111001,110110\}
$$

(c) Now suppose \mathcal{C} is an arbitrary (n, M, d)-code. Prove that the number of 1 s in D is at least $\binom{M}{2} d$. (Hint: consider D row-wise.)
(d) Prove that the number of 1 s in D is at most $n M^{2} / 4$. (Hint: consider D columnwise.)
(e) Deduce that $M \leq 2 d /(2 d-n)$, provided $2 d>n$.
(f) State, without proof, a bound relating $A_{2}(n, d)$ and $A_{2}(n-1, d)$.
(g) Deduce that $A_{2}(2 d, d) \leq 4 d$, for all $d \geq 1$.

Question 3. (a) Suppose \mathcal{C} is a code of length n over the alphabet A. What is meant by a decoding process for \mathcal{C} ? What does it mean for a decoding process to be nearest-neighbour?
(b) For this part of the question, let \mathcal{C} be the binary code

$$
\{000,001,110,111\} .
$$

i. Construct a nearest-neighbour decoding process for \mathcal{C} with the following additional property of "balance": Let $N(v)$ the number of input words that result in codeword $v \in \mathcal{C}$ being output. Then the decoding process is balanced if $N(v)$ is independent of $v \in \mathcal{C}$.
ii. Suppose the word 000 is transmitted through a noisy channel with error probability $p=\frac{1}{4}$. What is the probability that 000 is correctly decoded, assuming your balanced decoding process for \mathcal{C} is used?
(c) Let q denote the size of A, and suppose $x \in A^{n}$ is any word. Define the (Hamming) sphere $S(x, t)$ of radius t with centre x. Write down and briefly justify a formula for V, the number of words contained in $S(x, t)$.
(d) Recall that a t-error-correcting code \mathcal{C} is said to be perfect if $M V=q^{n}$, where $M=|\mathcal{C}|$. Prove that the nearest-neighbour decoding process for a perfect code \mathcal{C} is unique.

Question 4. (a) Define the notions of $[n, k]$ - and $[n, k, d]$-code over a field \mathbb{F}_{q}.
(b) Suppose \mathcal{C} is an $[n, k]$-code over \mathbb{F}_{q}. Explain what it means for a matrix G over \mathbb{F}_{q} to be a generator matrix for \mathcal{C}. What are the dimensions of G ?
(c) Consider the following column operations on a generator matrix:

- Add a multiple of one column to another.
- Let $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ be an arbitrary permutation of the field elements. Apply f to all the elements in some column of G.
Suppose G^{\prime} is a matrix that results from applying one or other operation to G. The matrices G and G^{\prime} do not in general generate equivalent codes. Illustrate this fact by presenting two counterexamples (one for each operation) based on the generator matrix

$$
\binom{101}{011}
$$

of the binary parity-check code of length 3 .
(Hint: Use an invariant of equivalent codes, such as minimum distance.)
(d) Explain how to restrict the permutation f in the second operation of part (c) so that only equivalent codes are produced.
(e) Prove that there is a unique ternary $[4,3,2]$-code (over \mathbb{F}_{3}), up to equivalence. Provide a simple description of this unique code.
(Hint. Start with a generator matrix in normal form.)

Question 5. (a) Suppose \mathcal{C} is an $[n, k]$-code over \mathbb{F}_{q}, with generator matrix G. Define the dual code \mathcal{C}^{\perp} of \mathcal{C}. Prove that \mathcal{C}^{\perp} is an $[n, n-k]$-code.
(Note: you may use standard results from linear algebra, provided they are correctly stated.)
(b) Write down conditions involving matrices G and H that express the situation that H is a parity-check matrix for \mathcal{C}. What is the relationship between H and the dual code \mathcal{C}^{\perp} ?
(c) Explain what it means for a generator matrix G to be in standard form. Given a matrix G in standard form, show how to write down a parity-check matrix H for the code \mathcal{C} generated by G.
(d) Write down a parity-check matrix H for the binary [5,2]-code \mathcal{C} with generator matrix

$$
G=\binom{10101}{01011}
$$

(Note that G is in standard form.)
(e) Construct a syndrome look-up table for H. Explain how the syndrome look-up table determines a decoding process for \mathcal{C}, and illustrate this process by decoding the word 11101.

Question 6. (a) Define the redundancy of a linear code.
(b) Describe the construction of the Hamming code $\operatorname{Ham}(r, q)$, of redundancy r over the alphabet \mathbb{F}_{q}.
(c) Illustrate your answer by writing down the parity-check matrix H for $\operatorname{Ham}(2,5)$, and deriving the associated generator matrix.
(d) State, without proof, the minimum distance of the code $\operatorname{Ham}(r, q)$.
(e) Prove that $\operatorname{Ham}(r, q)$ is an $[n, n-r]$-code, where $n=\left(q^{r}-1\right) /(q-1)$.
(f) Show that there is no Hamming code whose codewords have length 16.

Solutions

Question 1. (a) $\mathrm{A}(n, M, d)$-code \mathcal{C} is one with M codewords, all of length n, such that $d(u, v) \geq d$ for all distinct $u, v \in \mathcal{C}$. Then

$$
A_{3}(n, d)=\max \left\{M: \text { there exists a }(n, M, d) \text {-code over } \mathbb{F}_{3}\right\}
$$

(b) [Bookwork.] Let \mathcal{C} be a (n, M, d)-code with $M=A_{3}(n, d)$. For any $v=v_{1} \ldots v_{n} \in \mathcal{C}$, let $\hat{v}=v_{1} \ldots v_{n-1}$. Consider $\mathcal{C}=\{\hat{v}: v \in \mathcal{C}\}$. Since $d(\hat{u}, \hat{v}) \geq d(u, v)-1, \mathcal{C}^{\prime}$ is an ($n-1, M, d-1$)-code. (Since $d \geq 2$ the construction preserves the number of codewords.) Thus $A_{3}(n-1, d-1) \geq M=A_{3}(n, d)$.
(c) [Bookwork, at least for $q=2$, adapted to $q=3$.] Choose $v_{1} v_{2} v_{3} \in \mathbb{F}_{3}^{3}$ freely: 3^{3} choices. Now v_{4} is forced by the equation $v_{4}=-\left(v_{1}+v_{2}+v_{3}\right)$. So \mathcal{C} has 27 words. Suppose \mathcal{C} had two words u, v at Hamming distance 1. Then u, v agree in three positions, say $1,2,3$, and so $u_{1}=v_{1}, \ldots, u_{3}=v_{3}$. But now $u_{4}=v_{4}$, and $u=v$, a contradiction. So \mathcal{C} has minimum distance 2.
(d) [Routine application of bookwork.] A 1-error correcting ternary code of length n has at most $\left\lfloor 3^{n} /(1+2 n)\right\rfloor$ codewords. (This is the total number of words of length n divided by the number of words in any "sphere" of radius 1.) When $n=5$, this bound evaluates to $\left\lfloor 3^{5} /(1+2 \times 5)\right\rfloor=\lfloor 243 / 11\rfloor=22$.
(e) [Bookwork, adapted to $t=1$.] Let $x \in \mathbb{F}_{q}^{n}$ be a word at distance at most 1 from some codeword v. The word x cannot be at distance 1 from any other codeword v^{\prime} otherwise, by the triangle inequality, $d\left(v, v^{\prime}\right) \leq 2$.
(f) [Routine synthesis.] A code with minimum distance 3 is 1-error-correcting. So, from part (d), $A_{3}(5,3) \leq 22$. On the other hand, from part (c), $A_{3}(4,2) \geq 27$.

Question 2. (a) A binary (n, M, d)-code \mathcal{C} is a code over the alphabet $\{0,1\}$, having M codewords, all of length n, such that $d(u, v) \geq d$ for all distinct $u, v \in \mathcal{C}$.
(b) [Parts (b)-(e) lead the student through a proof of a simplified version of the Plotkin bound. The more precise version of the bound was proved in the course using a similar approach.]

$$
D=\left(\begin{array}{l}
001111 \\
111001 \\
110110 \\
110110 \\
111001 \\
001111
\end{array}\right)
$$

(c) The row corresponding to codewords u and v is $u+v$ (with addition in \mathbb{F}_{2}). Now weight $(u+$ $v)=d(u, v) \geq d$. There are $\binom{M}{2}$ rows, so the total number of $1 s$ in D is at least $\binom{M}{2} d$.
(d) Consider any column of D, say column 1 . There is a 1 in position 1 of the row containing $u+v$ iff $u_{1} \neq v_{1}$, i.e., u and v differ in position 1 . Suppose j codewords start with 1 , so that $M-j$ start with 0 . The number of 1 s in column 1 of D is then $j(M-j) \leq \frac{1}{4} M^{2}$. (Maximise a quadratic.) There are n columns, so the total number of 1 s in D is at most $n M^{2} / 4$.
(e) From (c) and (d), $\binom{M}{2} d \leq n M^{2} / 4$. Thus, $2(M-1) d \leq n M$ and $M \leq 2 d /(2 d-n)$.
(f) [Bookwork, specialised to $q=2$.] $A_{2}(n, d) \leq 2 A_{2}(n-1, d)$.
(g) [Unseen.] $A_{2}(2 d, d) \leq 2 A_{2}(2 d-1, d) \leq 4 d /(2 d-(2 d-1))=4 d$, where the inequalities are from parts (f) and (e), resp.

Question 3. (a) A decoding process is a function $f: A^{n} \rightarrow \mathcal{C}$. It is nearest neighbour if $d(w, f(w)) \leq$ $d(w, v)$ for all $w \in A^{n}$ and $v \in \mathcal{C}$.
(b) [The "balance" condition is an novelty element.] E.g.,

$$
\begin{aligned}
& f(000)=000 \\
& f(001)=001 \\
& f(010)=000 \\
& f(011)=111 \\
& f(100)=110 \\
& f(101)=001 \\
& f(110)=110 \\
& f(111)=111
\end{aligned}
$$

(There are three other possibilities.)
(c) [Similar to calculations in coursework.] Let w be the (possibly) corrupted word leaving the channel. For 000 to be correctly decoded, either $w=000$ or $w=010$. Now $\operatorname{Pr}(w=$ $000)=(1-p)^{3}=\frac{27}{64}$ and $\operatorname{Pr}(w=010)=p(1-p)^{2}=\frac{9}{64}$. So the probability of correct decoding is $\frac{27}{64}+\frac{9}{64}=\frac{36}{64}=\frac{9}{16}$.
(d) [Bookwork] $S(x, t)=\left\{v \in A^{n}: d(v, x) \leq t\right\}$. The number of words at distance exactly j from x is $\binom{n}{j}(q-1)^{j}$. (Choose j positions to be changed; for each position there are $q-1$ choices for the new symbol and all choices are independent.) Thus

$$
V=\binom{n}{0}+\binom{n}{1}(q-1)+\cdots+\binom{n}{t}(q-1)^{t}
$$

(e) [Unseen, but touched on in the course.] Consider the set $\{S(v, t): v \in \mathcal{C}\}$ of all spheres centered at codewords of \mathcal{C}. All spheres are disjoint, otherwise there would exist words that are not uniquely decodable. On the other hand, the spheres must cover all words in A^{n} since $M V=q^{n}$. Thus the spheres partition the space of all words. The only possible choice for $f(w)$ in a nearest neighbour decoding process is the centre of the sphere containing w.

Question 4. (a) An $[n, k]$-code over \mathbb{F}_{q} is a vector subspace of \mathbb{F}_{q}^{n} of dimension k. An $[n, k, d]$-code in addition has minimum distance d : no two codewords are closer than d in Hamming distance.
(b) G is a generator matrix for \mathcal{C} if the rows of G form a basis for \mathcal{C}. Thus G has k rows and n columns.
(c) [That these operations fail to preserve equivalence was discussed in the course. The counterexample is different.] First add column 2 to column 3 to obtain

$$
G^{\prime}=\binom{101}{010}
$$

Clearly, G^{\prime} is the generator matrix of a code \mathcal{C}^{\prime} containing the word 010 of weight 1 . But minimum distance is equal to the weight of a minimum weight non-zero codeword, which for \mathcal{C}^{\prime} is 1 . So \mathcal{C}^{\prime} cannot be equivalent to \mathcal{C}, which has minimum weight 2 .
Now apply the transposition $\binom{01}{10}$ to column 2 to obtain

$$
G^{\prime \prime}=\binom{111}{001}
$$

$G^{\prime \prime}$ is the generator matrix of a code $\mathcal{C}^{\prime \prime}$ of minimum distance 1 , which cannot be equivalent to \mathcal{C}.
(d) [Bookwork.] Restrict permutations of \mathbb{F}_{q} to ones of the form $\sigma(x)=a x$ for some $a \in$ $\mathbb{F}_{q} \backslash\{0\}$.
(e) [Unseen, but similar to examples from the lectures or exercises.] We know that any $[4,3,2]$ code \mathcal{C} is equivalent to one in standard form:

$$
\left(\begin{array}{l}
100 a \\
010 b \\
001 c
\end{array}\right)
$$

with $a, b, c \in \mathbb{F}_{3}$. Since \mathcal{C} has minimum distance $2, a, b, c \neq 0$. If $a=1$ then multiply row 1 by 2 and column 1 by 2 . Repeat for b and c. The generator matrix is now

$$
G=\left(\begin{array}{l}
1002 \\
0102 \\
0012
\end{array}\right)
$$

which is the generator matrix for the "parity-check" code over \mathbb{F}_{3}, which has minimum distance 2 . So any $[4,3,2]$-code is equivalent to one with generator matrix G.

Question 5. (a) [Bookwork. As in the course notes, codewords are row vectors.] $\mathcal{C}^{\perp}=\left\{w: G w^{\mathrm{T}}=0\right\}$. Define $\alpha: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{k}$ by $\alpha(w)=G w^{\mathrm{T}}$. Then $\mathcal{C}^{\perp}=\operatorname{ker} \alpha$. By the Rank-nullity Theorem, $\operatorname{dim} \operatorname{ker} \alpha=n-\operatorname{dim} \operatorname{Im} \alpha=n-k$, since G is of rank k.
(b) [Bookwork.] The conditions are: $G H^{\mathrm{T}}=0$ and H has full rank $(n-k) . H$ is a generator matrix for \mathcal{C}^{\perp}.
(c) [Bookwork.] G is in standard form if $G=\left[I_{k} \mid A\right]$, where I_{k} is the $k \times k$ identity matrix, and A an unrestricted $k \times(n-k)$ matrix. If G has this form then the parity-check matrix is $H=\left[-A^{\mathrm{T}} \mid I_{n-k}\right]$.
(d) [Routine application.]

$$
H=\left(\begin{array}{l}
10100 \\
01010 \\
11001
\end{array}\right)
$$

(e) [Application of bookwork; similar to examples from class/notes/exercises.] Syndrome decoding table:

$$
\begin{aligned}
& 000 \rightarrow 00000 \\
& 001 \rightarrow 00001 \\
& 010 \rightarrow 00010 \\
& 011 \rightarrow 01000 \\
& 100 \rightarrow 00100 \\
& 101 \rightarrow 10000 \\
& 110 \rightarrow 00110 \\
& 111 \rightarrow 01100
\end{aligned}
$$

Given a received word w, compute the syndrome $H w^{T}$. Look up the syndrome in the table to find a coset leader u. The decoded codeword is then $w-u$.
If $w=11101$ is received then the syndrome is 011 and the coset leader $u=01000$. Then the decoded codeword is $11101-01000=10101$.

Question 6. (a) Redundancy $r=n-k$.
(b) [Bookwork.] From each 1-dimensional linear subspace of \mathbb{F}_{q}^{r} select one non-zero vector. Suppose there are n such. Form a $r \times n$ matrix H whose columns are the n vectors just selected (in any order). The matrix H is the parity-check matrix of the code $\operatorname{Ham}(r, q)$.
(c) [Routine application of the above.] For $\operatorname{Ham}(2,5)$ the parity-check matrix (in standard form) is

$$
\binom{101111}{011234}
$$

The associated generator matrix is
$\left(\begin{array}{l}441000 \\ 430100 \\ 420010 \\ 410001\end{array}\right)$.
(d) [Bookwork.] The minimum distance is 3 .
(e) [Bookwork.] Each non-zero word in \mathbb{F}_{q}^{r} finds itself in one linear subspace together with $q-1$ other non-zero words. There are $q^{r}-1$ non-zero words in all, so $\left(q^{r}-1\right) /(q-1)$ different linear subspaces. This is also the number of columns, n, of the parity-check matrix. Since the parity-check matrix has r rows, the generator matrix must have $n-r$.
(f) [Unseen.] From the previous part $n=\left(q^{r}-1\right) /(q-1)$ with q a prime power.

- Try $r=2: n=16=q+1$, and $q=15$ is not a prime power.
- Try $r=3: n=16=q^{2}+q+1$, and $3<q<4$ is not integer.
- Try $r=4$: $n=16=q^{3}+q^{2}+q+1$, and $2<q<3$ is not integer.
- For $r>4, q<2$.

So there is no solution for q and r in integers, with q a prime power.

