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Question 1. SupposeC is a code of lengthn over theq-ary alphabetA.

(a) [Bookwork] What does it mean to say thatC is t-error-detecting? What does it mean to say that
C is t-error-correcting? Prove that ifC is 2t-error-detecting, thenC is t-error-correcting. (You
may assume the triangle inequality.) [4]
Solution: C is t-error-detecting if there do not exist wordsw, x ∈ C with d(w, x) 6 t. C is
t-error-correcting if there do not exist wordsv ∈ An andw, x ∈ C such thatw 6= x and

d(v, x) 6 t, d(w, x) 6 t.

SupposeC fails to bet-error-correcting. Then there arev,w, x as above. By the triangle inequal-
ity, we have

d(w, x) 6 d(v, x) + d(w, x) 6 t + t = 2t,

and soC is not2t-error-detecting. Hence ifC is 2t-error-detecting, then it ist-error-correcting.

(b) [Bookwork] If x is a codeword inC, define the sphereS(x, t), and prove that the number of
words inS(x, t) is

(

n

0

)

+ (q − 1)

(

n

1

)

+ (q − 1)2
(

n

2

)

+ · · · + (q − 1)t
(

n

t

)

. [7]

Solution:
S(x, t) = {w ∈ An | d(w, x) 6 t}.

We claim that the number of wordsw such thatd(w, x) = i is (q − 1)i
(

n
i

)

. The result will then
follow by summing overi = 0, 1, . . . t.
If w is a word such thatd(w, x) = i, then there are exactlyi positions wherew andx differ.
There aren positions altogether, so thei positions may be chosen in

(

n
i

)

different ways. For each
of these positions, we must then choose the symbol which appears inw. We may choose any
of the q symbols inA except the symbol appearing inx in this position, which gives usq − 1
choices. We make this choice independently for each position, giving usqi choices altogether
for thesei symbols. Hence we have(q − 1)i

(

n
i

)

ways to choosew altogether.

(c) [Bookwork] Deduce that ifC is t-error-correcting, then

|C| 6
qn

(

n
0

)

+ (q − 1)
(

n
1

)

+ (q − 1)2
(

n
2

)

+ · · · + (q − 1)t
(

n
t

) . [6]

Solution: If C is t-error-correcting, then the spheresS(x, t) for x ∈ C must be disjoint. For if
w, x ∈ C andv ∈ S(x, t) ∩ S(w, t) then we haved(v,w) 6 t andd(v, x) 6 t which contradicts
the fact thatC is t-error-correcting. The size of the union of disjoint sets isthe sum of their sizes,
and so we get

∣

∣

∣

∣

∣

⋃

x∈C

S(x, t)

∣

∣

∣

∣

∣

=
∑

x∈C

|S(x, t)|

=
∑

x∈C

((

n

0

)

+ (q − 1)

(

n

1

)

+ · · · + (q − 1)t
(

n

t

))

= |C|

((

n

0

)

+ (q − 1)

(

n

1

)

+ · · · + (q − 1)t
(

n

t

))

.
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But
⋃

x∈C S(x, t) is a subset ofAn, which contains exactlyqn words. And so

|C| 6

((

n

0

)

+ (q − 1)

(

n

1

)

+ · · · + (q − 1)t
(

n

t

))

6 qn,

which gives the result.

(d) [Bookwork] If C is a binary linear[n, k]-code, how many words are there inC? Briefly justify
your answer. [3]

Solution: There are2k words inC. If {e1, . . . , ek} is a basis forC, then each wordv ∈ C may be
written uniquely in the formλ1e1 + · · · + λkek for λ1, . . . , λk ∈ F2 = {0, 1}. So the number of
words inC is the number of choices of the coefficientsλ1, . . . , λk. We have two different choices
for eachλi, and hence2k choices altogether.

(e) [Unseen] Suppose thatn2+n+1 > 2l for some integerl, and thatC is a binary linear[n, k]-code
which is2-error-correcting. Prove thatk < n − l + 1. [5]

Solution: By the above inequality, we have

|C| 6
2n

(

n
0

)

+
(

n
1

)

+
(

n
2

)

=
2n

1 + n + n(n−1)
2

.

Hence (applying the previous part) we have

2k
6

2n

1
2(n2 + n + 2)

<
2n

1
2(2l)

= 2n−l+1,

and so
k < n − l + 1.
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Question 2. In this question we work with the binary alphabetA = {0, 1}.

(a) [Bookwork] What is meant by abinary (n,M, d)-code? Define the constantsA2(n, d). [2]

Solution: A binary (n,M, d)-code is a code over the alphabet{0, 1} in which each codeword
has lengthn, there are exactlyM codewords andd(v,w) > d for all distinct wordsv,w ∈ C.
A2(n, d) is the largestM for which a binary(n,M, d)-code exists.

[Marks: 1 for each part.]

Note: Some books require that an(n,M, d)-code have minimum distance exactlyd. Candidates
who use this definition will get the marks.

(b) [Similar to coursework] Supposen, m andd are positive integers. Prove that

A2(nm, dm) > A2(n, d). [6]

Solution: First we show that given a binary(n,M, d)-code, we can construct a binary(nm,M, dm)-
code. Given a wordv ∈ C, let v(m) denote the word of lengthnm obtained by writing the word
v m times. Define

C(m) = {v(m) | v ∈ C}.

By construction, each word inC has lengthnm. If v,w are distinct words inC, thenv(m) and
w(m) are distinct, so the number of words inC(m) equals the number of words inC, i.e. M . It
remains to show that the minimum distance ofC(m) is at leastdm, i.e. thatd(x, y) > nm for
all x, y ∈ C(m) with x 6= y. We havex = v(m), y = w(m) for somev,w ∈ C; sinceC has
minimum distance at leastd, v andw differ in at leastd positions. This means thatv(m) and
w(m) differ in at leastd of the firstn positions, at leastd of the nextn positions, and so on, so
thatd(v(m), w(m)) > dm.

If we choose an(n,M, d)-codeC with M = A2(n, d), then we get an(nm,M,nd)-code. There-
fore the largest possible(nm,N, nd)-code hasN > M , i.e.A2(nm, dm) > A2(n, d).

[Marks: 1 for knowing what construction they need to make, 2 for making it, 1 for each part of
the proof, 1 for finishing off.]

(c) [Bookwork/Unseen] Supposed is even. Explain how to construct a binary(n,M, d)-code from a
binary(n− 1,M, d− 1)-code (you do not have to prove that your construction works). Illustrate
by constructing a(10, 6, 6)-code from the code

{000000111, 000111000, 111000000, 011011011, 101101101, 110110110}. [4]

Solution: SupposeC is a binary(n − 1,M, d − 1)-code. For eachv ∈ C, define the wordv of
lengthn by adding a symbol0 or 1 to the end ofv in such a way as to make the number of1s
even. Then the code{v | v ∈ C} is an(n,M, d)-code.

The example:

{0000001111, 0001110001, 1110000001, 0110110110, 1011011010, 1101101100}.

[Marks: 2 for the construction, 2 for the example.]

(d) [Bookwork] State the Plotkin bound. (You should state both cases:d even andd odd.) [4]

Solution:
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• If d is even andn < 2d, then

A2(n, d) 6 2

⌊

d

2d − n

⌋

.

• If d is odd andn < 2d + 1, then

A2(n, d) 6 2

⌊

d + 1

2d + 1 − n

⌋

.

(e) [Unseen] Write down a binary(5, 4, 3)-code, and prove that for all positive integersm,

A2(5m, 3m) =

{

6 (if m is even)

4 (if m is odd)
. [9]

Solution:
{00000, 01101, 10110, 11011}.

If m is even, then3m is even and5m < 2 × 3m, and so by Plotkin we have

A2(5m, 3m) 6 2

⌊

3m

6m − 5m

⌋

= 6.

Since a(10, 6, 6)-code exists, we haveA2(10, 6) > 6. Hence by part (2b) we haveA2(10m, 6m) >

6 for all m. SoA2(5m, 3m) = 6 whenm is even.

If m is odd, then3m is odd and5m < 2 × 3m + 1, and so by Plotkin we have

A2(5m, 3m) 6 2

⌊

3m

6m + 1 − 5m

⌋

6 4.

Since a(5, 4, 3)-code exists, we haveA2(5, 3) > 4. By part (2b) we getA2(5m, 3m) > 4 for all
m, and we deduce thatA2(5m, 3m) = 4 whenm is odd.

[Marks: 1 for the example code, 4 for the upper bounds, 4 for the lower bounds.]

Note: They’ve seen this(5, 4, 3)-code many times in lectures, so this part should present no
trouble at all.
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Question 3. (a) [Bookwork] SupposeC is a code of lengthn over the alphabetA. Explain what is meant by a
decoding process for C. Explain what is meant by anearest-neighbour decoding process for C. [3]

Solution: A decoding process is a function fromAn to C. A nearest-neighbour decoding process
is a functionf from An to C such that

d(w, f(w)) 6 d(w, v)

for all w ∈ An andv ∈ C.

(b) [Unseen] LetC be the binary code
{000, 011, 110}.

Construct a nearest-neighbour decoding process forC. [3]

Solution:

000 7→ 000

001 7→ 000

010 7→ 000

011 7→ 011

100 7→ 000

101 7→ 011

110 7→ 110

111 7→ 011.

(c) [Bookwork/Unseen] Now supposeC is a linear[n, k]-code overFq. Explain what is meant by a
coset of C. Explain what is meant by theweight of a word. Explain what is meant by acoset
leader. Explain how to construct a Slepian array forC, and how to use a Slepian array to construct
a nearest-neighbour decoding process. Illustrate by constructing a Slepian array for the binary
linear code

C = {0000, 0011, 0110, 0101}. [9]

Solution: A coset ofC is a set of the form

w + C = {w + v | v ∈ C}

for w ∈ F
n
q . The weight of a word is the number of non-zero symbols. A coset leader is a word

which has the smallest weight of any word in the same coset. A Slepian array is aqn−k × qk

array of words such that:

• the words in the first row are the distinct codewords inC;

• the words in the first column are coset leaders, with one chosen from each coset;

• the word in theith row andjth column equals the coset leader at the left of theith row plus
the codeword at the top of thejth column.

Given a Slepian array, we construct a decoding processf as follows: given a wordw ∈ F
n
q , find

w in the array (it will appear exactly once). Definef(w) to be the codeword at the top of the
column containingw.
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0000 0011 0110 0101
0001 0010 0111 0100
1000 1011 1110 1101
1001 1010 1111 1100

[Marks: 1 for a coset. 1 for weight. 1 for a coset leader. 2 for aSlepian array, 2 for the decoding
process, 2 for the example.]

(d) [Bookwork] What is agenerator matrix for a linear[n, k]-codeC? What is aparity-check matrix? [3]

Solution: A generator matrix forC is ak×n matrixG whose rows form a basis forC. A parity-
check matrix is an(n − k) × n matrix H whose rows whose rows are linearly independent and
such thatHGT = 0 for a generator matrixG.

[Marks: 1 for generator, 2 for parity-check.]

Note: They can define a parity-check matrix in terms of the dual code, but they must define this.

(e) [Bookwork] If C is a linear code andH is a parity-check matrix forC, what is thesyndrome of a
wordw? [1]

Solution: The syndrome ofw is the wordwHT.

(f) [Unseen] LetC be the ternary code with generator matrix

(

1 0 1 2
0 1 1 0

)

.

Construct a parity-check matrix and a syndrome look-up table forC. Use your syndrome look-up
table to decode the word1111. [6]

Solution: A parity-check matrix is
(

2 2 1 0
1 0 0 1

)

.

A syndrome look-up table is
leader syndrome
0000 00
0001 01
0002 02
0010 10
0020 20
1000 21
2000 12
0011 11
0022 22

.

The syndrome of1111 is 22. The corresponding leader is0022, so we decode1111 as1111 −
0022 = 1122.

[Marks: 2 for the parity-check matrix, 3 for the table, 1 for the decoding.]
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Question 4. (a) [Bookwork/Similar to coursework] Define the Hamming distanced(v,w). Do there exist three
wordsv,w, x of length8 over the alphabet{0, 1} such that

d(v,w) = d(v, x) = d(w, x) = 5?

Justify your answer. [4]

Solution: No. LetV be the number ofi such thatvi 6= wi = xi. Let W be the number ofi such
thatwi 6= vi = xi. Let X be the number ofi such thatvi = wi 6= xi. SinceA contains only two
symbols, we can’t havevi 6= wi 6= xi 6= vi. So we have

5 = d(v,w) = V + W,

5 = d(v, x) = V + X,

5 = d(w, x) = W + X.

Summing, we obtain
15 = 2(V + W + X),

which is absurd.

[Marks: 1 for definition, 3 for proof.]

(b) [Bookwork] Explain what it means for two codes of lengthn over an alphabetA to be equivalent. [3]

Solution: Define two operations on codes.

Operation 1: choose a permutationσ of {1, . . . , n}. For a wordv ∈ C, define

vσ = vσ(1) . . . vσ(n).

Now replaceC with the code
Cσ = {vσ | v ∈ C}.

Operation 2: choosei ∈ {1, . . . , n} and a permutationf of A. For a wordv ∈ C, define

vf,i = v1 . . . vi−1(f(vi))vi+1 . . . vn.

Now replaceC with the code
Cf,i = {vf,i | v ∈ C}.

Say that two codes are equivalent if we can get from one to the other by repeatedly applying
Operations 1 and 2.

(c) [Bookwork] Prove that ifC is equivalent toD, then|C| = |D|. [6]

Solution: For Operation 1: suppose we have a permutationσ of {1, . . . , n}. We claim that the
map

φ : v 7−→ vσ

is a bijection fromC to Cσ, which will imply that |C| = |Cσ|. Certainlyφ is surjective, since
by definitionCσ is the image ofφ. For injectivity, suppose thatv andw are distinct words inC.
Thenvj 6= wj for somej. σ is a permutation, soj = σ(i) for somei ∈ {1, . . . , n}. Hence
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vσ(i) 6= wσ(i), sovσ andwσ differ in position i, so are distinct. Soφ is injective, and hence a
bijection.

For Operation 2: suppose we have a permutationf of A and we havei ∈ {1, . . . , n}. We claim
that the map

φ : v 7−→ vf,i

is a bijection fromC to Cf,i, which will imply that |C| = |Cf,i|. Certainlyφ is surjective, since
by definitionCf,i is the image ofφ. For injectivity, suppose thatv andw are distinct words inC.
Thenvj 6= wj for somej. If j 6= i, then this means that(vf,i)j 6= (wf,i)j . If j = i, then since
f is injective we havef(vi) 6= f(wi). So(vf,i)i 6= (wf,i)i. In either case,vf,i 6= wf,i, soφ is
injective.
So Operations 1 and 2 both preserve the number of words in a code, and so if two codes are
equivalent, they have the same number of words.

Let A = {0, 1, 2}, and letC = {0120, 1201, 1010}.

(d) [Similar to coursework] Find a code equivalent toC containing the word1111 (and prove that
it’s equivalent toC). [4]

Solution: Apply Operation 2, withi = 2 and

f =

(

0 1 2
0 2 1

)

to get to the code
{0220, 1101, 1010}.

Now apply Operation 2 withi = 3 and

f =

(

0 1 2
1 0 2

)

to get the code
{0220, 1111, 1000}.

(e) [Similar to coursework] IsC equivalent to the codeD = {0000, 0111, 2201}? Briefly justify
your answer. [2]
Solution: No. C contains two words0120 and1201 with d(0120, 1201) = 4. D does not contain
two words at distance4. The equivalence operations preserve the distance betweenany pair of
words, soC can’t be equivalent toD.

(f) [Bookwork] Explain what it means for two linear codes of lengthn overFq to be equivalent. [2]

Solution: We define two operations on codes.
Operation 1: as above.

Operation 2′: Choosei ∈ {1, . . . , n} anda ∈ Fq \ {0}. For a wordv ∈ C, define

va,i = v1 . . . vi−1(avi)vi+1 . . . vn.

Now replaceC with the code
Ca,i = {va,i | v ∈ C}.
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We say that two linear codes are equivalent if we can get from one to the other by repeatedly
applying Operations 1 and 2′.

Let C be the linear code{0000, 1210, 2120} overF3.

(g) [Unseen] Find a linear code equivalent toC containing the word0111 (and prove that it’s equiv-
alent toC). [4]

Solution: Apply Operation 2′, with i = 2 anda = 2, to get the code

{0000, 1110, 2220}.

Now apply Operation 1, with

σ =

(

1 2 3 4
4 2 3 1

)

to get the code
{0000, 0111, 0222}.
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Question 5. (a) [Bookwork] SupposeC is an(n,M, d)-code over theq-ary alphabetA and thatd > 1. Show how
to construct an(n−1,M, d−1)-code overA, and prove that it really is an(n−1,M, d−1)-code. [8]

Solution: For v ∈ C, define the wordv by deleting the last symbol inv. ThenC = {v | v ∈ C}
is an(n − 1,M, d − 1)-code. Clearly eachv has lengthn − 1. If v,w ∈ C with v 6= w, then
d(v,w) > d. Hence there are at leastd positions wherev andw differ. At most one of these can
be the last position, so there are at leastd−1 positions wherev andw differ. Sod(v,w) > d−1,
so the minimum distance ofC is at leastd − 1. Also, if v,w ∈ C with v 6= w, then (sinced > 1)
we haved(v,w) > 0, so thatv 6= w. So the number of words inC is the number of words inC,
i.e. M .

[Marks: 3 for construction, 5 for proof.]

(b) [Bookwork] Deduce that ifd > 1, thenAq(n, d) 6 Aq(n − 1, d − 1). [1]

Solution: Let C be an(n,M, d)-code withM = Aq(n, d). Then we can construct an(n −
1,M, d− 1)-code, which means that the largest possible(n− 1, N, d− 1) code hasN > M , i.e.
Aq(n − 1, d − 1) > Aq(n, d).

(c) [Bookwork] Prove thatAq(n, d) 6 qn−d+1 for d > 1. [3]

Solution: We use induction ond. Ford = 1, we wantAq(n, 1) 6 qn. But a code of lengthn is a
subset ofAn, which contains onlyqn words, so any code of lengthn contains at mostqn words.

Suppose now thatd = δ > 1 and that the result is true ford = δ − 1 (and alln). By the previous
part, we have

Aq(n, d) 6 Aq(n − 1, d − 1)

and by induction, this is at mostq(n−1)−(d−1)+1 = qn−d+1.

(d) [Bookwork] What is meant by theredundancy of a linear [n, k]-code? What is meant by a
maximum distance separable (MDS) code of lengthn and redundancyr? [2]

Solution: The redundancy of a linear[n, k]-code is the integerr = n − k. An MDS code of
lengthn and redundancyr is a linear[n, n − r, r + 1]-code.

(e) [Bookwork/Unseen] Write down a parity-check matrix fora linear[6, 3, 4]-code overF5. [5]

Solution: We begin by writing5 columns of the form

1
x

x2
,

one for eachx ∈ F5. Then we write a column

0
0
1

.

We get




1 1 1 1 1 0
0 1 2 3 4 0
0 1 4 4 1 1



 .
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(f) [Unseen] Using matrix operations, put your parity-check matrix in standard form. [4]

Solution: Swap columns 1 and 4:





1 1 1 1 1 0
3 1 2 0 4 0
4 1 4 0 1 1



 .

Multiply column 5 by4:




1 1 1 1 4 0
3 1 2 0 1 0
4 1 4 0 4 1



 .

Add row 2 to row 1:




4 2 3 1 0 0
3 1 2 0 1 0
4 1 4 0 4 1



 .

Add row 2 to row 3:




4 2 3 1 0 0
3 1 2 0 1 0
2 2 1 0 0 1



 .

Note: I’ve defined standard form for a parity-check matrix to be with the identity matrix at the
right, but if they put the identity matrix at the left, that’sOK.

(g) [Bookwork/Unseen] Hence write down a generator matrix for a linear[6, 3, 4]-code overF5. [2]

Solution:




1 0 0 1 2 3
0 1 0 3 4 3
0 0 1 2 3 4



 .

(For parts (e–g) you do not have to explain your method, but doing so may help you to gain marks if
you make arithmetical errors.)
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Question 6. For this question, you may assume any basic linear algebra you need, including the Rank–Nullity
Theorem.

(a) [Bookwork] SupposeC is a linear[n, k]-code overFq. Define the dot productv.w, and the dual
codeC⊥. [2]

Solution: If v = v1 . . . vn andw = w1 . . . wn, then

v.w = v1w1 + v2w2 + · · · + vnwn.

The dual code is
C⊥ = {w ∈ F

n
q | v.w = 0 for all v ∈ C}.

(b) [Bookwork] If G is a generator matrix forC, prove thatw ∈ C⊥ if and only if GwT = 0. (You
may assume that the dot product is symmetric and bilinear.) [5]
Solution: Let e1, . . . , ek denote the rows ofG. Thene1, . . . , ek form a basis forC. The ith
symbol ofwGT is w.ei, and so we havewGT = 0 if and only if w.ei = 0 for all i. If w ∈ C⊥,
thenw.v = 0 for all v ∈ C, and in particularw.ei = 0 for eachi, sowGT = 0. Conversely,
supposew.ei = 0 for all i. A codewordv can be written asλ1e1 + · · · + λkek for some
λ1, . . . , λk ∈ Fq, and we have

w.v = w.(λ1e1 + · · · + λkek) = λ1(w.e1) + · · · + λk(w.ek) = 0,

sow ∈ C⊥.

(c) [Bookwork] Prove thatC⊥ is a linear code of lengthn overFq. What is the dimension ofC⊥?
Justify your answer. [5]
Solution: Fact (The Rank–Nullity Theorem): If G is ak × n matrix overFq, then the kernel
of G is a vector subspace ofF

n
q , of dimensionn minus the rank ofG.

The previos part of the question shows thatC⊥ is the kernel ofG, which is a subspace ofF
n
q , i.e.

a linear code. Since the rows ofG are linearly independent, the rank ofG is the number of rows,
i.e.k, and so the dimension ofC⊥ is n − k.

Now supposeC is a linear[4, 2]-code overF2 such thatC⊥ = C.

(d) [Bookwork] How many words doesC contain? (You do not need to justify your answer.) [1]
Solution: 4.

(e) [Similar to coursework] Prove thatC contains at least two words of weight2. [3]
Solution: The If v = v1v2v3v4 is a word inC, then (sincev ∈ C⊥) we have

0 = v.v = v2
1 + v2

2 + v2
3 + v2

4 ,

and this equalsv1 + v2 + v3 + v4, since02 = 0 and11 = 1. Hence every word inC has even
weight, i.e. weight0, 2 or 4. There is only one word of length4 and weight0, and only one of
length4 and weight4, so there must be at least two words inC of weight2.

(f) [Similar to coursework] Write down all binary words of length4 and weight2. [2]
Solution:

0011, 0101, 0110, 1001, 1010, 1100.
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(g) [Similar to coursework] Deduce thatC is one of the codes

{0000, 0011, 1100, 1111},

{0000, 0101, 1010, 1111},

{0000, 0110, 1001, 1111}. [3]

Solution: Let v,w be two different words inC of weight 2. Then (sincew ∈ C⊥) we have
v.w = 0. By checking the dot product of each pair of the six words above, we find that{v,w}
equals{0011, 1100}, {0101, 1010} or {0110, 1001}. HenceC is one of the codes listed.

(h) [Unseen] Write down a generator matrix for a linear[4, 2]-codeD overF3 such thatD⊥ = D. [4]

Solution:
(

1 0 1 1
0 1 1 2

)

.

Note: Parts (e)–(h) are identical to a coursework question.
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Question 7. (a) [Bookwork] Write down parity-check matrices in standard form for the Hamming codesHam(3, 2)
andHam(2, 3). Hence write down generator matrices forHam(3, 2) andHam(2, 3). (You do
not have to explain your method, but doing so may help you to gain marks if you make arithmetic
errors.) [7]

Solution: For Ham(3, 2): construct a3 × 23 − 1 matrix whose columns are all the different
non-zero vectors inF3

2:




1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



 .

ForHam(2, 3): for v,w ∈ F
2
3, definev ≡ w if v = λw for a non-zeroλ ∈ F3. Now construct a

2 × 32−1
3−1 matrix whose columns consist of one vector from each equivalence class:

(

1 1 1 0
2 1 0 1

)

.

If (B|I) is a standard-form parity-check matrix, then(I| − BT) is a generator matrix. So we get
generator matrices









1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1









and
(

1 0 2 1
0 1 2 2

)

respectively.

[Marks: 4 for the parity-check matrices, 3 for the generatormatrices.]

(b) [Bookwork] How many words are there inHam(3, 2)? What is the minimum distance ofHam(3, 2)?
How many words are there inHam(2, 3)? What is the minimum distance ofHam(2, 3)? (You
do not need to justify your answers.) [4]

Solution: Ham(3, 2) contains16 words, and has minimum distance3. Ham(2, 3) contains9
words, and has minimum distance3.

[Marks: 1 for each question.]

Given binary wordsv,w of lengthm, define the productv ∗ w by

v ∗ w = (v1w1)(v2w2) . . . (vmwm).

(c) [Bookwork] Using the product∗ described above, describe how the binary Reed–Muller code
R(r, n) is constructed. Write down generator matrices forR(1, 3) andR(2, 3). [8]

Solution: Let xi(n) be the word of length2n consisting of alternate chunks of0s and1s, the
chunks being of length2i, and the first chunk being a chunk of0s. Let1(n) denote the word of
length2n consisting entirely of1s. Now letS(r, n) denote the set of all products of at mostr of
the wordsx0(n), x1(n), . . . , xn−1(n), including the ‘empty product’1(n). ThenR(r, n) is the
binary linear code spanned by all the words inS(r, n).
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For example,R(1, 3) has generator matrix









1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1









andR(2, 3) has generator matrix





















1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1





















.

[Marks: 4 for construction, 4 for the matrices.]

(d) [Bookwork] What is the dimension ofR(r, n)? What is its minimum distance? (You do not need
to justify your answers.) [2]

Solution: R(r, n) has dimension
(

n
0

)

+
(

n
1

)

+ · · · +
(

n
r

)

, and minimum distance2n−r.

(e) [Unseen] LetC be the code obtained fromR(1, 3) by deleting the last symbol from each code-
word. Prove thatC is a linear code, and write down a generator matrix forC. [4]

Solution: Given v ∈ R(1, 3), let v denotev with the last symbol removed.R(1, 3) contains
the word00000000, soC contains the word0000000. If x, y ∈ C, thenx = v, y = w for some
v,w ∈ R(1, 3). R(1, 3) contains the wordv + w, and soC contains the wordv + w. And in fact

v + w = (v + w)1 . . . (v + w)7 = (v1 + w1) . . . (v7 + w7) = v + w.

SoC is colsed under addition.C is closed under scalar multiplication, since0x = 0000000 ∈ C
for anyx ∈ C and1x = x.

To find a generator matrix, we delete the last column from the generator matrix forR(1, 3):









1 1 1 1 1 1 1
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1









.

[Marks: 3 for the proof, 1 for the matrix.]
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