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Matthew Fayers and Lucia Morotti

Abstract. For any finite group G and any prime p one can ask which ordinary irreducible representations
remain irreducible in characteristic p, or more generally, which representations remain homogeneous in
characteristic p. In this paper we address this question when G is a proper double cover of the symmet-
ric or alternating group. We obtain a classification when p = 3 except in the case of a certain family of
partitions relating to spin RoCK blocks. Our techniques involve induction and restriction, degree calcu-
lations, decomposing projective characters and recent results of Kleshchev and Livesey on spin RoCK
blocks.
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1. Introduction

In the representation theory of finite groups it is interesting and useful to classify the ordinary
irreducible representations of a group G that remain irreducible modulo a prime p. This classification
has been carried out for various families of groups, including the symmetric groups [JM2, L, F1, F2],
the alternating groups [F3, F4] and the finite general linear and special linear groups [JM1, KT] in non-
defining characteristic, as well as the double covers of the symmetric and alternating groups when
p = 2 [F5, F6]. In this paper we address the same problem for the double covers in odd characteristic,
obtaining an almost-complete classification in the case p = 3.
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In fact in this setting it is more natural to classify representations which remain homogeneous (that
is, with all composition factors isomorphic) modulo p. To state our main theorem, let Ŝn denote a
proper double cover of the symmetric group Sn, and Ân the corresponding double cover of the alter-
nating group An. Irreducible representations of these groups on which the central involution z acts
trivially correspond to representations of the quotient groups Sn and An, so we concentrate on repre-
sentations on which z acts non-trivially, also called spin representations. The spin representations of
CŜn are modules for the twisted group algebra Tn, which is usually studied as a superalgebra, with
irreducible supermodules labelled by strict partitions of n. We let Sλ

0 be the irreducible supermodule
labelled by a strict partition λ, and let Sλ

p be a reduction modulo p of Sλ
0 . Our main result is the

following.

Theorem 1.1. If λ is a strict partition and Sλ
3 is homogeneous as a supermodule then one of the

following holds:
(1) λ = ν + 3α where ν is a 3-bar core and α is a partition with l(α) ⩽ l(ν);
(2) λ = (3a) with a ⩾ 2;
(3) λ = ν ⊔ (3) with ν a 3-bar core;
(4) λ is one of the partitions (2, 1), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 3, 2, 1), (5, 4, 3, 1), (5, 4, 3, 2),

(5, 4, 3, 2, 1), (7, 4, 3, 2, 1), (8, 5, 3, 2, 1).
Furthermore in cases (2)–(4) Sλ

3 is homogeneous.

This theorem gives a classification of supermodules which are homogeneous modulo 3, except for
partitions appearing in case (1). For this case we make a precise conjecture (Conjecture 3.7 below)
saying exactly which Sλ are homogeneous, and we hope to resolve this in future work.

A classification of Tn-supermodules which reduce homogeneously directly leads to a classifica-
tion of spin representations for Ŝn and Ân which remain irreducible in characteristic p (see Propo-
sition 3.2). From our almost-complete classification for p = 3 in Theorem 1.1, we can deduce the
following. Recall that a strict partition λ is even if it has an even number of positive even parts, and
odd otherwise. For each even strict partition λ of n we have an irreducible CŜn-module Sλ, and a pair
of irreducible CÂn-modules Tλ,±. For each odd strict partition λ of n, we have a pair of irreducible
CŜn-modules Sλ,± and an irreducible CÂn-module Tλ. All irreducible spin modules for CŜn and
CÂn arise in this way.

Theorem 1.2. Suppose M is an irreducible spin module for CŜn or CÂn. If the reduction of M modulo
3 is irreducible, then one of the following holds:

(1) M is one of the modules Sλ(,±) or Tλ(,±), where ν is a 3-bar core and α is a partition with
l(α) ⩽ l(ν) and λ = ν + 3α;

(2) M = S(6a),± or M = T(6a−3),± for a ⩾ 1;
(3) M = Sν⊔(3),±, where ν is an odd 3-bar core;
(4) M = Tν⊔(3),±, where ν is an even 3-bar core;
(5) M is one of S(2,1),±, T(2,1), S(3,2,1),±, T(4,3,2),±, T(4,3,2,1),±, S(5,3,2,1),±, S(5,4,3,1),±, T(5,4,3,2),±, T(5,4,3,2,1),±,

T(7,4,3,2,1),±, T(8,5,3,2,1),±.
Furthermore in cases (2–5) M is irreducible modulo 3.

Our approach to the representation theory of Ŝn follows the Brundan–Kleshchev approach to dou-
ble covers via supermodules, using in particular their branching rules for irreducible supermodules
and their analogue of James’s regularisation theorem. We also make use of the very recent study by
Kleshchev and Livesey of RoCK blocks for double covers of symmetric groups; this leads us to an
analysis of modules for a certain wreath product algebra, for which we emulate results of Chuang
and Tan. Finally, we make extensive use of known decomposition numbers, which have been worked
out by Maas [Ma].

It is natural to ask what the corresponding results are for p ⩾ 5, and it seems likely that many of
our techniques will help in finding a general classification. With this in mind, we prove our results
for arbitrary odd p as far as possible until Section 5 (especially results on induction and restriction
in Section 4). However, in Sections 6 and 7 we will restrict attention to characteristic 3. The main



Irreducible spin representations in characteristic 3 3

difficulty in generalising Theorem 1.1 seems to be in generalising the list of “exceptional” partitions
appearing in (4), which appears to grow as p gets larger. But with limited data available for small
values of n, it is hard to make a conjecture.

Acknowledgements

The first author was supported during this research by EPSRC Small Grant EP/W005751/1. This
funding also allowed the second author to visit Queen Mary University of London, where some of
this research wad carried out.

While working on the revised version the second author was working at Mathematisches Institut
of the Heinrich-Heine-Universität Düsseldorf as well as the Department of Mathematics of the Uni-
versity of York. While working at the University of York the second author was supported by the
Royal Society grant URF\R\221047.

We thank Sasha Kleshchev and the referee for helpful comments and conversations.

2. Background

In this section we describe the background results we shall need. Throughout this paper we fix an
odd prime p, and we will state results for general p as far as is convenient. Later in the paper we will
specialise to the case p = 3.

2.1. Partitions

A composition of n is a sequence λ = (λ1, λ2, . . . ) of non-negative integers such that the sum |λ| =
λ1 + λ2 + · · · equals n. A composition λ is called a partition if it is weakly decreasing. When writing
partitions, we usually group together equal parts with a superscript and omit trailing zeroes. The
unique partition of 0 is written as ∅. The length of a partition λ, denoted l(λ), is the number of
non-zero parts of λ. We write P for the set of all partitions, and P(n) for the set of partitions of n.

We adopt natural conventions for adding together compositions and multiplying by scalars. Sup-
pose λ, µ are compositions and m ∈ N. Then we write λ + mµ for the composition (λ1 + mµ1, λ2 +
mµ2, . . . ). We also define λ ⊔ µ to be the partition whose parts are the combined parts of λ and µ,
written in decreasing order.

Often we will consider partitions some of whose parts form an arithmetic progression with com-
mon difference 3; so if x ⩾ y with x ≡ y (mod 3) , then we write x 3. . . . y to mean the sequence
x, x − 3, . . . , y. For example, we may write (18, 17 3. . . . 5, 1) for the partition (18, 17, 14, 11, 8, 5, 1).

The dominance order P is a partial order on partitions defined by setting λ P µ if |λ| = |µ| and
λ1 + · · ·+ λr ⩽ µ1 + · · ·+ µr for all r.

A partition λ is called strict if λr > λr+1 for all 1 ⩽ r < l(λ), or p-strict if for all r either λr > λr+1 or
λr ≡ 0 (mod p) . A p-strict partition is called restricted if for all r either λr − λr+1 < p or λr − λr+1 = p
and λr ̸≡ 0 (mod p) . We write P0 for the set of all strict partitions, and P0(n) for the set of strict
partitions of n. We write RP p for the set of all restricted p-strict partitions, and RP p(n) for the set
of restricted p-strict partitions of n. We say that a strict partition is even is it has an even number of
positive even parts, and odd otherwise.

For any partition λ, we write lp(λ) for the number of positive parts of λ divisible by p.

2.2. Addable and removable nodes

The Young diagram of a partition λ is the set{
(r, c) ∈ Z2 ∣∣ 1 ⩽ r, 1 ⩽ c ⩽ λr

}
,

whose elements we call the nodes of λ. We draw Young diagrams as arrays of boxes in the plane using
the English convention.

The residue of a node (r, c) is the smaller of the residues of c − 1 and r − c modulo p; an i-node
means a node of residue i. We write I = {0, . . . , 1

2 (p − 1)} for the set of possible residues.
If λ is a p-strict partition, then we say that λ is p-even if it has an even number of nodes of non-zero

residue, and p-odd otherwise.
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For example, suppose p = 5 and λ = (8, 7, 3). The residues of the nodes of λ are indicated in the
following diagram.

0 1 2 1 0 0 1 2
0 1 2 1 0 0 1
0 1 2

Since λ has eleven nodes of non-zero residue, it is a 5-odd partition.
If λ is a p-strict partition, then we say that an i-node of λ is removable if it can be removed (possibly

in conjunction with other i-nodes) to leave a p-strict partition. We define addable nodes in a similar
way.

If λ is a strict partition, we say that an i-node of λ is strictly-removable if it can be removed (possibly
in conjunction with other i-nodes) to leave a smaller strict partition. We define strictly-addable i-
nodes of λ similarly.

(In fact if i ̸= 0 the notions of addable and strictly-addable coincide when λ is strict, but for i = 0
they are different, and the distinction will be crucial in this paper.)

The notion of addable and removable nodes leads to the definition of normal and conormal nodes.
Take λ ∈ RP p, and let i be a residue. The i-signature of λ is the sequence of signs obtained by reading
the addable and removable i-nodes of λ from left to right, writing + for each addable node and − for
each removable node. The reduced i-signature is obtained by repeatedly deleting adjacent pairs +−.
The removable nodes corresponding to the − signs in the reduced i-signature are called the normal
i-nodes of λ, and the addable nodes corresponding to the + signs are called the conormal i-nodes of λ.

If λ has at least one normal i-node, then we define ẽi(λ) to be the partition obtained by removing
the rightmost normal i-node. If λ has at least one conormal i-node, then we define f̃i(λ) to be the
partition obtained by adding the leftmost conormal i-node. It is a simple exercise to check that ẽi(λ)
and f̃i(λ) are restricted p-strict partitions if they are defined, and that if λ, µ are restricted p-strict
partitions, then λ = ẽi(µ) if and only if µ = f̃i(λ).

For example, take p = 3, λ = (5, 4, 3, 2, 1) and i = 0. The addable and removable 0-nodes are
indicated in the following diagram.

+ +
−

+
−

We see that the 0-signature of λ is −+−++. So the reduced 0-signature is −++; the normal 0-node
is (5, 1), and the conormal 0-nodes are (1, 6) and (1, 7). So ẽ0(λ) = (5, 4, 3, 2) and f̃0(λ) = (6, 4, 3, 2, 1).

2.3. Regularisation

For each l ⩾ 0, we define the lth ladder to be the set of nodes

Ll =

{
(r, c) ∈ N2

∣∣∣∣ ⌊ (p − 1)c
p

⌋
+ (p − 1)(r − 1) = l

}
.

For example when p = 3, the ladders can be illustrated in the following diagram, where we label all
the nodes in Ll with l, for each l.

0 1 2 2 3 4 4 5 6 6
2 3 4 4 5 6 6
4 5 6 6
6

We say that ladder m is longer than ladder l when l < m.
The main reason for introducing ladders is to define regularisation. Given a p-strict partition λ,

we define its regularisation λreg by taking the Young diagram of λ and moving all the nodes to the
leftmost positions in their ladders. It is a simple exercise to show that the resulting diagram is the
Young diagram of a restricted p-strict partition.
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For example, if p = 3 and λ = (12, 7, 2), then λreg = (8, 6, 4, 2, 1), as we see from the following
diagrams.

0 1 2 2 3 4 4 5 6 6 7 8
2 3 4 4 5 6 6
4 5

0 1 2 2 3 4 4 5
2 3 4 4 5 6
4 5 6 6
6 7
8

2.4. p-bar cores

Next we recall the notion of p-bar cores. Suppose λ is a p-strict partition. Removing a p-bar from λ
means either

⋄ replacing λr with λr − p and then re-ordering, for some r for which λr ⩾ p and either p | λr
or λr − p is not a part of λ, or

⋄ deleting two parts whose sum is p.
The p-bar core of λ is the strict partition obtained by repeatedly removing p-bars until none remain.

The p-bar-weight of λ is the number of p-bars removed to reach the p-bar core. In general, we say
that a strict partition is a p-bar core if it equals its own p-bar core.

For example, the 3-bar cores are the partitions (3l − 1 3. . . . 2) for l ⩾ 0 and (3l − 2 3. . . . 1) for l ⩾ 1.

2.5. The double cover of the symmetric group

Now we set out the background on representation theory that we need. We work over a sufficiently
large field F of characteristic not equal to 2. Let Sn denote the symmetric group on {1, . . . , n}, and Ŝn
the double cover of Sn specified in [K]. The group algebra FŜn decomposes as a direct sum of FSn
and a twisted group algebra Tn. For n ⩾ 4 the group Ŝn is a Schur cover of Sn, and representations
of Tn are called spin representations of Ŝn.

In practice it is easier to treat Tn as a superalgebra (that is, a Z/2Z-graded algebra), and consider
its supermodules. Much of the representation theory of Tn as an algebra can then be recovered
by forgetting the Z/2Z-grading. We refer to [K, Chapter 12] for the essentials on superalgebras
and supermodules. In particular, we note that irreducible supermodules come in two types: an
irreducible supermodule D is of type M if it is irreducible as a module, and of type Q if it is reducible
as a module (in which case it is a direct sum of two irreducible modules). In any block of Tn all the
irreducible modules have the same type, and we say that the block is of type M or type Q accordingly.

Given modules or supermodules M, N, we write M ∼ N to mean that M and N have the same
composition factors. We may extend this notation linearly, writing M ∼ N + N′ or M ∼ aN for a ⩾ 0.

The classification of irreducible supermodules in characteristic 0 can be derived from the work of
Schur. For each λ ∈ P0(n) there is an irreducible supermodule Sλ

0 , of type M if λ is even, and of
type Q if λ is odd. These supermodules give all the irreducible Tn-supermodules up to isomorphism
when F has characteristic 0.

The classification of irreducible supermodules in odd characteristic p is much more recent, and
is due to Brundan and Kleshchev [BK1, BK2]. (The constructions in the two papers are different
but they have been shown to be equivalent in [KS].) For each λ ∈ RP p(n) there is an irreducible
supermodule Dλ, of type M if λ is p-even, or of type Q if λ is p-odd. We write Pλ for the projective
cover of Dλ.

For p > 0, we will write Sλ
p (or simply Sλ if p is understood) for a p-modular reduction of Sλ

0 .
Though Sλ is not well-defined as a supermodule, its composition factors are. If P is a projective
supermodule for Ŝn in characteristic p, then P lifts to a CŜn-module P0; we write [P : Sλ] for the
composition multiplicity of Sλ

0 in P0.
The decomposition number problem asks for the composition multiplicities dλµ = [Sλ : Dµ] for λ ∈

P0(n) and µ ∈ RP p(n). By Brauer reciprocity dλµ can also be recovered from the multiplicity [Pµ :
Sλ]; specifically, dλµ = 2x−y[Pµ : Sλ], where x = 1 if λ is odd and 0 otherwise, while y = 1 if µ is
p-odd and 0 otherwise.



6 Matthew Fayers and Lucia Morotti

We will also need the classification of the blocks of Tn, which was proved by Humphreys [H]. In
fact in this paper we consider superblocks; since these are almost always the same as blocks, we will
abuse notation by using the term “block” to mean “superblock”. Given a strict partition λ and a
restricted p-strict partition µ, the supermodules Sλ and Dµ lie in the same block of Tn if and only if λ
and µ have the same p-bar core. This automatically means that λ and µ have the same p-bar-weight,
and it customary to label a block by its bar core and bar-weight, meaning the common p-bar core and
p-bar-weight of the partitions labelling modules in the block.

An alternative description of the blocks follows from a combinatorial lemma of Morris and Yaseen
[MY, Theorem 5]: Sλ and Dµ lie the same block if and only if λ and µ have the same number of
i-nodes, for each i ∈ I. So we may alternatively label a block by the multiset of elements of I corre-
sponding to the residues of a labelling partition. We call this multiset the content of the block.

2.6. Induction and restriction functors

We shall make extensive use of results concerning induction and restriction functors; these are due
to Brundan and Kleshchev, and are explained in more detail in the survey [BK3] and the book [K].
From now on wee assume F has odd characteristic p.

Recall from above the notion of the content of a block of Tn. Suppose M is a Tn-module lying in a
block B and i ∈ I. Let B(−i) be the block of Tn−1 whose content is obtained from the content of B
by removing a copy of i (if such a block exists), and let ei M be the block component of M↓Tn

lying
in B(−i) (if there is no block B(−i), then set ei M = 0). We define induction functors fi for i ∈ I in a
similar way by picking out block components of induced modules. Then

M↓Tn−1
=

⊕
i∈I

ei M, M↑Tn+1 =
⊕
i∈I

fi M.

The functors ei, fi are defined for all n, so we can consider powers er
i , fr

i , for r ⩾ 0. For any module
M and any i ∈ I there is r ⩾ 0 for which er

i M = 0, and an important part of the Brundan–Kleshchev
branching rules is a determination of the minimal such r in the case where M = Sλ or Dµ.

Take λ ∈ P0(n) and i ∈ I. Write λ−i for the partition obtained by removing all the strictly-
removable i-nodes of λ, and let ϵ̂i(λ) be the number of nodes removed; that is, ϵ̂i(λ) = |λ| − |λ−i|.
Similarly, write λ+i for the partition obtained by adding all the strictly-addable i-nodes to λ, and let
ϕ̂i(λ) be the number of i-nodes added to λ to obtain λ+i.

For example, suppose p = 3 and λ = (9, 5, 4, 2). The strictly-addable and strictly-removable 0-
nodes are indicated in the following diagram.

− +
+ +

−
+

+

We see that λ−0 = (8, 5, 3, 2) and λ+0 = (10, 7, 4, 3, 1), so that ϵ̂0(λ) = 2 and ϕ̂0(λ) = 5.
The following is a version of the classical branching rule for spin modules in characteristic 0.

Theorem 2.1. Suppose λ ∈ P0(n) and i ∈ I.
(1) Let Λ− be the set of strict partitions that can be obtained by removing an i-node from λ. Then

eiSλ ∼ ∑
µ∈Λ−

aµSµ,

where aµ equals 2 if λ is odd and µ is even, and 1 otherwise.
(2) Let Λ+ the set of strict partitions that can be obtained by adding an i-node to λ. Then

fiSλ ∼ ∑
µ∈Λ+

aµSµ,

where aµ equals 2 if λ is odd and µ is even, and 1 otherwise.

Corollary 2.2. Suppose λ ∈ P0(n) and i ∈ I, and let ϵ̂ = ϵ̂i(λ) and ϕ̂ = ϕ̂i(λ).
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(1) There is a > 0 such that

eϵ̂
i Sλ ∼ aSλ−i

, er
i S

λ = 0 for r > ϵ̂.

(2) There is b > 0 such that

fϕ̂
i Sλ ∼ bSλ+i

, fr
i S

λ = 0 for r > ϕ̂.

For the irreducible modules Dµ we can make a similar statement to Corollary 2.2. Given a re-
stricted p-strict partition µ, let ϵi(µ) be the number of normal i-nodes of µ, and let µ▽i be the partition
obtained by removing all the normal i-nodes from µ (or in other words, µ▽i = ẽϵi(µ)

i (µ)). Similarly,

let ϕi(µ) be the number of conormal i-nodes of µ, and let µ△i = f̃ϕi(µ)
i (µ) be the partition obtained by

adding all the conormal i-nodes.

Lemma 2.3. Suppose µ ∈ RP p(n) and i ∈ I, and let ϵ = ϵi(µ) and ϕ = ϕi(µ).
(1) There is a > 0 such that

eϵ
i Dµ ∼ aDµ▽i

, er
i D

µ = 0 for r > ϵ.

(2) There is b > 0 such that

fϕ
i Dµ ∼ bDµ△i

, fr
i D

µ = 0 for r > ϕ.

2.7. Jucys–Murphy elements and weight spaces

Later we shall need to make use of weight spaces; we briefly explain the background, following
[K, Section 22].

There are elements y1, . . . , yn ∈ Tn (defined originally by Sergeev) which are analogues of the
Jucys–Murphy elements in FSn; in particular, the squares y2

1, . . . , y2
n generate a large commutative

subalgebra of Tn. Given a Tn-supermodule M and a tuple i = (i1, . . . , in) ∈ In, we define the i-weight
space

M[i] = {m ∈ M | (y2
r − 1

2 ir(ir + 1))Nm = 0 for N ≫ 0 and 1 ⩽ r ⩽ n} .
Then M is the direct sum of the weight spaces M[i]. We say that i is a weight of M if M[i] ̸= 0.

In the case where M = Sλ for λ ∈ P0(n) we can describe the weights explicitly. To explain this,
we need to introduce standard shifted tableaux. A standard shifted λ-tableau is a bijection t from the
Young diagram of λ to the set {1, . . . , n} such that

t(r, c) < t(r, c + 1), t(r, c + 1) < t(r + 1, c)

for all admissible r, c.
Given a shifted tableau t, we define ik to be the residue of the node t−1(k) for each k, and then

define the tuple it = (i1, . . . , in) ∈ In. Now the following result follows from the branching rules for
the modules Sλ.

Proposition 2.4. Suppose λ ∈ P0(n) and t is a standard shifted λ-tableau. Then it is a weight of Sλ.

Proof. We use induction on n, with the case n = 0 being trivial. Assuming n ⩾ 1, let (r, c) be the
node for which t(r, c) = n. Let λ− be the partition obtained from λ by removing the node (r, c).
Then the definition of a standard shifted tableau means that λ− ∈ P0(n − 1) and that the tableau t−
obtained by restricting t to λ− is a standard shifted λ−-tableau. Let i be the residue of (r, c). Then the
branching rule means that Sλ−

appears in eiSλ, so by [K, Lemma 22.3.14] if (i1, . . . , in−1) is a weight
of Sλ−

then (i1, . . . , in−1, i) is a weight of Sλ. By induction it− is a weight of Sλ−
, and so it is a weight

of Sλ. □

3. Irreducible and homogeneous modules

Our motivation in this paper is to classify the irreducible representations of Ŝn in characteristic 0
which remain irreducible when reduced modulo p. In fact the answer to this question depends on
whether we consider modules or supermodules, but we address both questions (as well as the cor-
responding question for the double cover of the alternating group) by considering the more general
question of homogeneous modules.
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We say that a strict partition λ is homogeneous if the composition factors of Sλ (as a supermodule)
are all isomorphic. The following theorem due to Brundan and Kleshchev is a very useful tool for
classifying homogeneous partitions. Recall that λreg denotes the regularisation of λ, and lp(λ) the
number of positive parts of λ divisible by p.

Theorem 3.1. Suppose λ ∈ P0. Then

[Sλ : Dλreg
] = 2

lp(λ)+x−y
2 ,

[Pλreg
: Sλ] = 2

lp(λ)+y−x
2 ,

where x is 0 if λ is even and 1 if λ is odd, and y is 0 if λ is p-even and 1 if λ is p-odd. All other
composition factors of Sλ are of the form Dµ with µ ◁ λreg.

Proof. The corresponding result for the algebraic supergroup Q(n) is proved in [BK4, Theorem 1.2],
and the result for Tn follows by [BK2, Theorem 10.8]. □

Suppose λ is a strict partition. If λ is even, then Sλ
0 is irreducible as a module, and we write this

module as Sλ
0 . If λ is odd, then as a module Sλ

0 splits as the direct sum of two non-isomorphic ir-
reducible modules which we write as Sλ,+

0 and Sλ,−
0 . These modules give all the irreducible spin

representations of Ŝn in characteristic 0. We also consider the double cover Ân of the alternating
group: if λ is even, then Sλ

0↓Ân
splits as the direct sum of two non-isomorphic irreducible modules

which we write as Tλ,+
0 and Tλ,−

0 , while if λ is odd, then Sλ,+
0 ↓Ân

∼= Sλ,−
0 ↓Ân

is an irreducible module
which we write as Tλ

0 . These modules give all the irreducible spin representations of Ân in character-
istic 0. We write Sλ

p for a p-modular reduction of Sλ
0 , and similarly for the other modules just defined

(though we may simply write Sλ if p is understood).
A classification of homogeneous partitions also directly allows us to classify which modules Sλ(,±)

p

and Tλ(,±)
p are almost homogeneous (by which we mean that all composition factors of Sλ(,±)

p or Tλ(,±)
p

are indexed by the same partition), as Sλ(,±)
p has a composition factor indexed by µ if and only if Sλ

p

has a composition factor Dµ
p and similarly for Tλ(,±)

p .
Theorem 3.1 tells us that if λ is homogeneous then all the composition factors of Sλ

p are isomorphic
to Dλreg

, and gives the number of composition factors. So a classification of homogeneous partitions
also allows us to answer the question of irreducibility in different settings, as follows.

Proposition 3.2. Suppose λ ∈ P0.
(1) (a) If λ is even, then Sλ

p is an irreducible supermodule if and only if λ is homogeneous and
lp(λ) ⩽ 1.

(b) If λ is odd, then Sλ
p is an irreducible supermodule if and only if λ is homogeneous and

lp(λ) = 0.
(2) (a) If λ is even, then Sλ

p is irreducible if and only if λ is homogeneous and lp(λ) = 0.
(b) If λ is odd, then Sλ,±

p is irreducible if and only if λ is homogeneous and lp(λ) ⩽ 1.
(3) (a) If λ is even, then Tλ,±

p is irreducible if and only if λ is homogeneous and lp(λ) ⩽ 1.
(b) If λ is odd, then Tλ

p is irreducible if and only if λ is homogeneous and lp(λ) = 0.

Proof. In this proof, for any supermodule M we write M for the underlying module.
(1) This follows immediately from Theorem 3.1.
(2) (a) In this case Sλ = Sλ, so if Sλ is irreducible then certainly Sλ is. So assume λ is homo-

geneous and lp(λ) ⩽ 1. Then Sλ ∼= Dλreg
, by Theorem 3.1. Now Sλ ∼ Dλreg

, which
is irreducible if and only if λreg is p-even. By Theorem 3.1, this happens if and only if
lp(λ) = 0.

(b) First note that Sλ,+ is irreducible if and only if Sλ,− is, since these modules are images of
each other under tensoring with the sign module. Now Sλ,+ ⊕ Sλ,− ∼ Sλ, so if Sλ,± is
irreducible then certainly [Sλ : Dλreg

] ⩽ 2.
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If [Sλ : Dλreg
] = 1, then by Theorem 3.1 lp(λ) = 0 and λ is p-odd, so Dλreg

has two
composition factors. So Sλ,± is irreducible if and only if Sλ has no other composition
factors, i.e. λ is homogeneous.
If [Sλ : Dλreg

] = 2, then by Theorem 3.1 either lp(λ) = 1 and λ is p-even, or lp(λ) = 2
and λ is p-odd. But in the second case Sλ would have at least four composition factors, a
contradiction. So Sλ,± can be irreducible only in the first case, with λ being homogeneous.

(3) We begin by observing that if µ is a restricted p-strict partition then Dµ↓Ân
has composition

length 2: if µ is p-even then Dµ is irreducible and therefore invariant under tensoring with the
sign module, so its restriction to Ân splits as a direct sum of two modules. If µ is p-odd, then
Dµ is a direct sum of two non-isomorphic modules; these modules are images of each other
under tensoring with the sign module, so remain irreducible on restriction to Ân.
(a) As in 2(b), Tλ,+ is irreducible if and only if Tλ,− is. Now Tλ,+ ⊕ Tλ,− ∼ Sλ↓Ân

. So (from
the observation above) Tλ,± is irreducible if and only if Sλ is an irreducible supermodule,
i.e. if and only if lp(λ) ⩽ 1.

(b) In this case Sλ↓Ân
∼ Sλ,+↓Ân

⊕ Sλ,−↓Ân
∼ 2Tλ. So Tλ is irreducible if and only if Sλ↓Ân

has exactly two composition factors, which happens if and only if Sλ is irreducible. □

With Proposition 3.2 in mind, we focus on homogeneous modules for the rest of the paper.
To begin with, we will need some simple known results on decomposition numbers due to Wales

and Müller. For simplicity we state Müller’s result only in the case p = 3.

Theorem 3.3. [W, Tables III and IV]
(1) Suppose λ = (n). Then λ is homogeneous.
(2) Suppose λ = (n − 1, 1) with n ⩾ 5. Then λ is homogeneous if and only if n ̸≡ 0, 1 (mod p).

Theorem 3.4. [Mü, Theorem 4.4] Suppose p = 3, and that λ = ν ⊔ (3) with ν a 3-bar core. Then λ is
homogeneous.

We now reformulate our main result Theorem 1.1, giving us a classification of homogeneous λ
excluding partitions of a certain type. We say that a strict partition λ is special if there is i ∈ {1, 2}
such that all the non-zero parts of λ are congruent to i modulo 3. Equivalently, λ has the form ν + 3α
where ν is a 3-bar core and α is a partition with l(α) ⩽ l(ν).

Theorem 3.5. Suppose p = 3 and λ is a strict partition which is not special. Then λ is homogeneous
if and only if one of the following holds.

(1) λ = (3a) with a ⩾ 2.
(2) λ = ν ⊔ (3) with ν a 3-bar core.
(3) λ ∈ {(2, 1), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 3, 2, 1), (5, 4, 3, 1),

(5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1), (8, 5, 3, 2, 1)}.

We can immediately observe the following consequence, which is relevant for Proposition 3.2.

Corollary 3.6. Suppose p = 3 and λ ∈ P0. If λ is homogeneous, then l3(λ) ⩽ 1.

Proof. We can easily see that each of the partitions in Theorem 3.5 has at most one part divisible by
3. Any other homogeneous partition is special, and so by definition has no parts divisible by 3. □

For special partitions, we make the following conjecture. A partition α is called 3-Carter if for every
1 ⩽ r < s and every 1 ⩽ c ⩽ αs, the (r, c)-hook length of α and the (s, c)-hook length of α are divisible
by the same powers of 3. (The name “Carter” refers to a conjecture formulated by Carter, and proved
by James [J], on irreducible Specht modules for the symmetric group.)

Conjecture 3.7. Suppose p = 3 and λ is a special strict partition, and write λ = ν + 3α with ν a 3-bar
core. Then λ is homogeneous if and only if α is a 3-Carter partition.

We expect this conjecture to hold in view of [KL, Conjecture 1] and [FKM, Theorem 6.17]. The
results in this paper show that it is true whenever l(α) = 1, or the last column of α has length at least
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3, or the last two columns of α both have length 2. Known decomposition matrices also show that
the conjecture is true when α = (2, 1) or (3, 1).

We will give the proof of Theorem 3.5 in the final section of this paper. Before that, we recall some
other results we shall need and prove some useful results.

4. Induction and restriction of homogeneous modules

In this section we apply the induction and restriction functors from Section 2.6 to homogeneous
modules, in order to provide a basis for the induction proof of our main theorem.

Lemma 4.1. Let λ ∈ P0(n) and i ∈ I, and assume that λ is homogeneous. Then λ−i is homogeneous.
Furthermore ϵ̂i(λ) = ϵi(λ

reg) and (λreg)▽i = (λ−i)reg.

Proof. By Theorem 3.1 we have Sλ ∼ (Dλreg
)⊕c for some c > 0. Since the functor ei is exact Corol-

lary 2.2 and Lemma 2.3 immediately give ϵ̂(λ) = ϵ(λreg) and

(Sλ−i
)⊕a ∼ (D(λreg)▽i

)⊕b

for some a, b > 0. Now Theorem 3.1 gives (λ−i)reg = (λreg)▽i. □

In the same way we can prove the following.

Lemma 4.2. Let λ ∈ P0(n) and i ∈ I, and assume that λ is homogeneous. Then λ+i is homogeneous.
Furthermore ϕ̂i(λ) = ϕi(λ

reg) and (λreg)△i = (λ+i)reg.

Corollary 4.3. Let λ ∈ P0(n) and suppose i ∈ I with ϕ̂i(λ) = 0. Then λ is homogeneous if and only
if λ−i is homogeneous.

Proof. This follows by Lemmas 4.1 and 4.2. □

Now we prove an analogue of a result from [F6] which helps us to apply the condition (λreg)▽i =
(λ−i)reg from Lemma 4.1. To help with future work, we continue to allow p to be any odd prime,
though our results simplify considerably in the special case p = 3 that we consider in this paper.

We recall the definition of the ladders Ll from Section 2.3. Observe that the nodes in Ll all have
the same residue, and that this residue depends on the residue of l modulo p − 1.

Suppose λ is a p-strict partition, and let ladl(λ) denote the number of nodes of λ in Ll . Let saddl(λ)
denote the number of strictly-addable nodes of λ in Ll , and addl(λ) the number of addable nodes
of λ in Ll . Define sreml(λ) and reml(λ) similarly, for strictly-removable nodes. Define all these
numbers to be 0 when l < 0.

We begin by considering ladders comprising nodes of residue 1
2 (p − 1).

Lemma 4.4. Suppose λ is a p-strict partition, and l ∈ N with l ≡ 1
2 (p − 1) (mod p − 1). Then

reml−p+1(λ)− addl(λ) =

{
ladl(λ)− ladl−1(λ)− ladl−p+2(λ) + ladl−p+1(λ) if p ⩾ 5
ladl(λ)− ladl−1(λ) + ladl−2(λ) if p = 3.

Proof. This is proved in a similar way to [F6, Lemma 4.15]. For each node (r, c) ∈ Ll , we can consider
the set of (up to) four nodes

{(r − 1, c), (r − 1, c + 1), (r, c − 1), (r, c)} ∩N2.

By examining the possible intersections of this set with [λ], we can show that the lemma holds when
restricted to just these nodes. Then by summing over all nodes (r, c) ∈ Ll , we obtain the result. □

When λ is a strict partition and Ll consists of nodes of non-zero residue, it is easy to see that
addl(λ) = saddl(λ) and reml−p+1(λ) = sreml−p+1(λ). As a consequence, we obtain

saddl(λ)− sreml−p+1(λ) = addl(λ
reg)− reml−p+1(λ

reg)

for any strict partition λ when l ≡ 1
2 (p − 1) (mod p − 1), because ladk(λ

reg) = ladk(λ) for every k.
Now we can obtain a precise criterion for when ϵ̂i(λ) > ϵi(λ

reg) in the case i = 1
2 (p − 1). This is

analogous to [F4, Proposition 4.9].
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Proposition 4.5. Suppose λ is a strict partition and that i = 1
2 (p − 1). Then ϵ̂i(λ) > ϵi(λ

reg) if and
only if λ has a strictly-removable i-node and a strictly-addable i-node in a longer ladder.

Proof. The proof is essentially the same as for [F4, Proposition 4.9]. The crucial point is that when we
read the addable and removable i-nodes of a restricted p-strict partition from left to right, the nodes
in longer ladders come first, and within each ladder the removable nodes come before the addable
nodes. □

For residues i ̸= 1
2 (p − 1), it is harder to give a necessary and sufficient criterion for ϵ̂i(λ) >

ϵi(λ
reg), but it suffices for our purposes to show that the condition in Proposition 4.5 is sufficient.

We consider the case i = 0. Take l ≡ 0 (mod p − 1), and define cl(λ) to be the number of nodes
(r, c) ∈ Ll such that c ≡ 0 (mod 3), r ⩾ 2 and (λr−1, λr, λr+1) = (c + 1, c, c − 1).

Lemma 4.6. Suppose λ is a p-strict partition and l ≡ 0 (mod p − 1). Then

reml−p+1(λ)− addl(λ) = ladl(λ)− 2 ladl−1(λ)− 2 ladl−p+2(λ) + ladl−p+1(λ)− δl0.

Furthermore, if λ is strict, then

sreml−p+1(λ)− saddl(λ) = ladl(λ)− 2 ladl−1(λ)− 2 ladl−p+2(λ) + ladl−p+1(λ)− cl(λ) + cl−p+1(λ)− δl0.

Proof. Suppose (r, c) is a node in Ll , with c ≡ 1 (mod p). Then (as in [F6, Lemma 4.15]) we can
consider the set of nodes

X(r,c) = {(r− 2, c+ 1), (r− 1, c− 1), (r− 1, c), (r− 1, c+ 1), (r, c− 2), (r, c− 1), (r, c), (r+ 1, c− 2)}∩N2.

By considering the intersection of X(r,c) with [λ], we can show that if p ⩾ 5, then the two formulæ
hold when restricted to X(r,c). Now summing over all (r, c) gives the result. (In particular, the calcu-
lation for the second formula is identical to that in [F6, Lemma 4.15].)

For p = 3, if we restrict attention to X(r,c), we obtain

reml−2(λ)− addl(λ) = ladl(λ)− 2 ladl−1(λ) + ladl−2(λ)− δl0

and (if λ is strict)

sreml−2(λ)− saddl(λ) = ladl(λ)− 2 ladl−1(λ) + ladl−2(λ)− cl(λ) + cl−2(λ)− δl0.

Now summing again gives the result, but here we have to take account of the fact that the sets X(r,c)
overlap, so that each node in Ll−1 must be counted twice. □

Now we can give a sufficient (but not necessary) condition for ϵ̂0(λ) > ϵ0(λreg).

Proposition 4.7. Suppose λ is a strict partition, and that λ has a strictly-removable 0-node and a
strictly-addable 0-node in a longer ladder. Then ϵ̂0(λ) > ϵ0(λreg).

Proof. We follow the proof of [F6, Proposition 4.17]. As there, given an integer u we write [u] to
denote a string of u plus signs if u ⩾ 0, or a string of −u minus signs if u ⩽ 0. Let µ = λreg. When we
read the addable and removable 0-nodes from left to right, the nodes in longer ladders come earlier,
and within each ladder the removable nodes come before the addable nodes. This means that the
0-signature of µ is

. . . [add3p−3(µ)][− rem2p−2(µ)][add2p−2(µ)][− remp−1(µ)][addp−1(µ)][− rem0(µ)][add0(µ)].

So the reduced 0-signature is the reduction of the sequence

. . . [add3p−3(µ)− rem2p−2(µ)][add2p−2(µ)− remp−1(µ)][addp−1(µ)− rem0(µ)][add0(µ)].

By Lemma 4.6 this is the same as the sequence

. . .[sadd3p−3(λ)− srem2p−2(λ)− c3p−3(λ) + c2p−2(λ)]

[sadd2p−2(λ)− sremp−1(λ)− c2p−2(λ) + cp−1(λ)]

[saddp−1(λ)− srem0(λ)− cp−1(λ) + c0(λ)]

[sadd0(λ)− c0(λ)].

Now the proof proceeds exactly as in [F6, Proposition 4.17]. □
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It remains to consider residues i such that 1 ⩽ i ⩽ 1
2 (p − 3). Take l ∈ N with l ̸≡ 0 (mod 1

2 (p − 1)).
For a p-strict partition λ, define dl(λ) to be the number of nodes (r, c) ∈ Ll such that (λr, λr+1) =
(c, c − 1). Now we have the following lemma.

Lemma 4.8. Suppose λ is a p-strict partition, and l ∈ N with l ̸≡ 0 (mod 1
2 (p − 1)). Let k < l be

maximal such that k + l ≡ 0 (mod p − 1). Then

remk(λ)− addl(λ) =

{
ladl(λ)− ladl−1(λ)− ladk+1(λ) + ladk(λ)− dk(λ) + dl−p+1(λ) if l ̸≡ 1 (mod p − 1)
ladl(λ)− ladl−1(λ) + ladk(λ)− dk(λ) + dl−p+1(λ) if l ≡ 1 (mod p − 1).

Proof. This is proved in a similar way to Lemmas 4.4 and 4.6. For each node (r, c) ∈ Ll , we let b < c
be maximal such that b + c ≡ 1 (mod p), and consider the set

X(r,c) = {(r, b), (r, b + 1), (r, c − 1), (r, c)} ∩N2.

It is easy to check that the formula holds when restricted to the set X(r,c), and summing over (r, c)
gives the result. □

As with Lemma 4.4, we can replace remk(λ) and addl(λ) with sremk(λ) and saddl(λ) when λ is
strict, because Lk and Ll consist of nodes of non-zero residue. So we obtain

saddl(λ)− sremk(λ) + dl−p+1(λ)− dk(λ) = addl(λ
reg)− remk(λ

reg) + dl−p+1(λ
reg)− dk(λ

reg)

when λ is strict. To exploit this, we need to examine the function dl(λ) a little more closely.

Lemma 4.9. Suppose λ is a p-strict partition and l ∈ N with l ̸≡ 0 (mod 1
2 (p − 1)). Then dl(λ

reg) ⩽
dl(λ).

Proof. Let µ = λreg. In fact it is possible to determine dl(µ) quite explicitly. Suppose dl(µ) ⩾ 1, and
take a node (r, c) ∈ Ll such that (µr, µr+1) = (c, c − 1). Note in particular that the node (r, c + 1)
belongs to Ll+1 \ [µ], while (r + 1, c − 1) belongs to Ll+p−2 ∩ [µ]. Now the node (r + 1, c + 1 − p)
(if there is such a node) belongs to [µ], which means that (r, c + 1) is the leftmost node in Ll+1 \ [µ].
Similarly, (r + 1, c − 1) is the rightmost node in Ll+p−2 ∩ [µ]. This in particular shows that (r, c) is
unique, so that dl(µ) = 1. We also obtain ladl+p−2(µ) > ladl+1(µ). Conversely, if ladl+p−2(µ) >
ladl+1(µ) and if there is at least one node in ladder l + 1 which does not belong to [µ], then we obtain
dl(µ) ⩾ 1 (by taking (r, c) such that (r, c + 1) is the leftmost node of Ll+1 not in µ).

So we have shown that dl(µ) equals 1 if ladl+p−2(µ) > ladl+1(µ) and there is at least one node
of Ll+1 not in [µ], and 0 otherwise. So to prove the lemma it suffices to show that if ladl+p−2(λ) >
ladl+1(λ) and there is at least one node of Ll+1 which is not in λ, then dl(λ) ⩾ 1. If there is a node
(s, d) ∈ Ll+p−2 such that s ⩾ 2 and (s − 1, c + 2) /∈ [λ], then we can deduce dl(λ) ⩾ 1 by taking
(r, c) = (s − 1, c + 1), and we are done. So assume there is no such node (s, d). Now the assumption
that ladl+p−2(λ) > ladl+1(λ) means that [λ] contains the unique node of Ll+p−2 in row 1, and that
for each node (s, d) ∈ Ll+p−2 with s ⩾ 2, the node (s, d) lies in [λ] if and only if (s − 1, c + 2) does.
But now we find that because [λ] contains that unique node of Ll+p−2 in row 1, it also contains
the unique node of Ll+1 in row 1, and therefore contains the unique node of Ll+p−2 in row 2, and
therefore the unique node of Ll+1 in row 2, and so on, so that [λ] contains every node of Ll+1, contrary
to assumption. □

Now we can prove the final result concerning ϵ̂i(λ) > ϵi(λ
reg).

Proposition 4.10. Suppose λ is a strict partition and i ∈ I, and that λ has a strictly-removable i-node
and a strictly-addable i-node in a longer ladder. Then ϵ̂i(λ) > ϵi(λ

reg).

Proof. The cases i = 0 and i = 1
2 (p − 1) are dealt with in Propositions 4.5 and 4.7. So take i ̸=

0, 1
2 (p − 1). We follow the structure of the proof of Proposition 4.7. Let µ = λreg, and let l1 < l2 < · · ·

be the ladders that contain nodes of residue i. As in Proposition 4.7, when we read the addable and
removable i-nodes from left to right, the nodes in longer ladders come earlier, and within each ladder
the removable nodes come before the addable nodes. This means that the i-signature of µ is

. . . [addl4(µ)][− reml3(µ)][addl3(µ)][− reml2(µ)][addl2(µ)][− reml1(µ)][addl1(µ)].
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So the reduced i-signature is the reduction of the sequence

. . . [addl4(µ)− reml3(µ)][addl3(µ)− reml2(µ)][addl2(µ)− reml1(µ)][addl1(µ)].

By Lemma 4.8 this is the same as the sequence

. . .[saddl4(λ)− sreml3(λ)− bl3(λ) + bl2(λ)]

[saddl3(λ)− sreml2(λ)− bl2(λ) + bl1(λ)]

[saddl2(λ)− sreml1(λ)− bl1(λ)]

[saddl1(λ)],

where bl(λ) = dl(λ) − dl(µ) for each l. Since by Lemma 4.9 each bl(λ) is non-negative, we can
complete the proof exactly as in [F6, Proposition 4.17]. □

5. Dimension arguments

In the proof of our main theorem we will often use arguments involving dimensions, similar to
those in [F5, F6].

5.1. The bar-length formula

First we recall Schur’s “bar-length formula” [S] for the dimension of Sλ: if λ ∈ P0(n), then

dim Sλ = 2⌈
1
2 (n−l(λ))⌉ |λ|!

∏1⩽r⩽l(λ) λr!
∏1⩽r<s⩽l(λ)(λr − λs)

∏1⩽r<s⩽l(λ)(λr + λs)
.

Now define

ddim(λ) =
dim Sλ

[Sλ : Dλreg
]
.

Using Theorem 3.1, we get

ddim(λ) = 2⌈
1
2 (|λ|−l(λ)−lp(λ))⌉ |λ|!

∏1⩽r⩽l(λ) λr!
∏1⩽r<s⩽l(λ)(λr − λs)

∏1⩽r<s⩽l(λ)(λr + λs)
.

Now the following lemma follows from Theorem 3.1.

Proposition 5.1. Suppose λ and µ are strict partitions with λreg = µreg and ddim(λ) > ddim(µ).
Then λ is not homogeneous.

To help us use this, we have an analogue of [F6, Lemma 4.19], which is proved in the same way.

Lemma 5.2. Suppose λ and µ are strict partitions with µ ▷ λ, and m > µ1. Define

λ+ = (m, λ1, λ2, . . . ),

µ+ = (m, µ1, µ2, . . . ).

Then
ddim(λ+)

ddim(µ+)
>

ddim(λ)

ddim(µ)
.

In addition, if λreg = µreg, then (λ+)reg = (µ+)reg.

The next few lemmas apply these results in specific situations. For the remainder of Section 5.1,
we take p = 3. These results typically work as follows: we define two families of strict partitions
λ(l), µ(l), and we wish to show that ddim(λ(l)) > ddim(µ(l)) for all l greater than or equal to some
threshold l0. The bar-length formula will allow us to calculate the ratio rl = ddim(λ(l))/ ddim(µ(l)),
and to express rl+1/rl as a rational function of l. We show that the value of this rational function is
greater than 1 for all l ⩾ l0; in each case, this can be shown by subtracting the denominator from the
numerator, and checking that all derivatives of the resulting polynomial are positive at l = l0. We
deduce rl0 < rl0+1 < · · · , and we can check directly that rl0 > 1 to get the result.
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Lemma 5.3. Suppose p = 3, l ⩾ 3 and define

λ(l) = (3l + 1 3. . . . 10, 6, 4, 3, 1).

Then λ(l) is not homogeneous.

Proof. Define
µ(l) = (3l + 4, 3l − 2 3. . . . 7, 3, 1)

for each l ⩾ 3. Then λ
reg
(l) = µ

reg
(l) , and the bar-length formula gives

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

(l + 1)(3l + 1)(3l + 8)
l(3l + 5)(3l + 7)

> 1.

So
ddim(λ(3))

ddim(µ(3))
<

ddim(λ(4))

ddim(µ(4))
<

ddim(λ(5))

ddim(µ(5))
. . . .

The bar-length formula also gives ddim(λ(3)) = ddim(µ(3)), so we are done by Proposition 5.1,
except in the case l = 3, where we can achieve the same result using the partition (13, 7, 4) instead of
µ(3). □

Lemma 5.4. Suppose p = 3, l ⩾ 4, and define

λ(l) = (3l, 3l − 3, 3l − 7, 3l − 8, 3l − 12 3. . . . 3),

µ(l) = (3l, 3l − 3, 3l − 5, 3l − 9 3. . . . 6, 2).

Then ddim(λ(l)) > ddim(µ(l)).

Proof. The bar-length formula gives

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

(l − 3)l3(2l − 5)2(2l − 1)(3l − 7)(3l − 5)(3l − 4)2(3l + 5)(6l − 11)2(6l − 7)(6l + 1)
(l − 2)4(l + 2)(2l − 3)2(3l − 8)(3l − 1)(3l + 1)2(6l − 17)(6l − 13)(6l − 5)2(6l − 1)

.

This fraction is always greater than 1 when l ⩾ 5. Since ddim(λ(l)) > ddim(µ(l)) for l = 4, 5, the
same is true for all l ⩾ 4. □

Lemma 5.5. Suppose p = 3, l = 4 or l ⩾ 7, and define

λ(l) = (3l + 1, 3l − 3, 3l − 7, 3l − 8, 3l − 12 3. . . . 3),

µ(l) = (3l + 1, 3l − 3, 3l − 5, 3l − 9 3. . . . 6, 2)

Then ddim(λ(l)) > ddim(µ(l)).

Proof. For l = 4 the lemma can be easily checked. For l ⩾ 7 the bar-length formula gives

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

(l − 3)(l − 1)2l(l + 2)(2l − 5)2(3l − 7)(3l − 5)(3l − 1)2(3l + 1)(3l + 4)(6l − 11)2(6l − 7)
(l − 2)4(l + 1)2(2l − 3)(3l − 8)(3l − 2)3(3l + 7)(6l − 17)(6l − 13)(6l − 5)(6l − 1)

.

Since this fraction is always greater than 1 and ddim(λ(7)) > ddim(µ(7)), the result follows. □

Lemma 5.6. Suppose p = 3, l ⩾ 6, and define

λ(l) = (3l − 1, 3l − 2, 3l − 7, 3l − 8, 3l − 12 3. . . . 3),

µ(l) = (3l − 1, 3l − 2, 3l − 6, 3l − 8 3l − 12 3. . . . 6, 2).

Then ddim(λ(l)) > ddim(µ(l)).

Proof. The bar-length formula gives

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

(l − 4)(l − 1)3(l + 1)(2l − 5)2(3l − 10)(3l − 8)(3l − 4)(3l − 1)(3l + 2)(6l − 1)
(l − 3)(l − 2)2l3(2l − 1)(3l − 11)2(3l − 5)(3l + 5)(6l − 13)(6l − 7)

> 1.

Since ddim(λ(6)) > ddim(µ(6)), the result follows. □



Irreducible spin representations in characteristic 3 15

Lemma 5.7. Suppose p = 3, l ⩾ 3 and define

λ(l) = (3l 3. . . . 3).

Then λ(l) is not homogeneous.

Proof. Define
µ(l) = (3l − 1, 3l − 2, 3l − 6 3. . . . 3).

Then µ
reg
(l) = λ

reg
(l) , and the bar-length formula gives

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

l2(6l − 5)(6l − 1)
(2l − 1)2(3l − 2)(3l + 2)

> 1.

Since ddim(λ(3)) > ddim(µ(3)), we are done by Proposition 5.1. □

Lemma 5.8. Suppose p = 3, l ⩾ 7, and define

λ(l) = (3l − 1, 3l − 2, 3l − 6 3. . . . 3).

Then λ is not homogeneous.

Proof. Define
µ(l) = (3l − 1, 3l − 2, 3l − 7, 3l − 8, 3l − 12 3. . . . 3).

Then µ
reg
(l) = λ

reg
(l) , and

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

(l − 2)2(2l − 1)2(6l − 17)(6l − 13)(6l − 11)(6l − 7)
(2l − 5)2(2l − 3)2(3l − 8)(3l − 4)(6l − 5)(6l − 1)

> 1.

Now the fact that ddim(λ(7)) > ddim(µ(7)) gives the result. □

Lemma 5.9. Suppose p = 3, l ⩾ 2, and define

λ(l) =

{
(3l, 3l − 4, 3l − 5, 3l − 9 3. . . . 3) if l ⩾ 3
(6, 2, 1) if l = 2.

Then λ is not homogeneous.

Proof. We aim to find a strict partition µ such that µreg = λreg and ddim(µ) < ddim(λ). For 2 ⩽ l ⩽ 7
the partition (3l − 1, 3l − 2, 3l − 6 3. . . . 3) will do the trick, while for l ⩾ 8 we define

µ(l) = (3l, 3l − 3, 3l − 5, 3l − 9 3. . . . 6, 2).

Then µ
reg
(l) = λ

reg
(l) , and

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

(l − 3)l3(2l − 3)2(2l + 1)(3l − 7)(3l − 5)(3l − 2)2(3l − 1)(3l + 5)
(l − 2)(l − 1)3(l + 2)(2l − 1)2(3l − 8)2(3l + 1)3(6l − 7)

> 1.

Now the fact that ddim(λ(8)) > ddim(µ(8)) gives the result. □

Lemma 5.10. Suppose p = 3, l ⩾ 1, and define

λ(l) = (6l + 6, 6l + 4 3. . . . 3l + 7, 3l + 3, 3l + 1 3. . . . 4),

µ(l) = (6l + 6, 6l + 4 3. . . . 3l + 4, 3l, 3l − 2 3. . . . 4).

Then ddim(λ(l)) > ddim(µ(l)).

Proof. The bar-length formula gives

ddim(λ(l))

ddim(µ(l))
=

(l + 1)(3l − 1)(6l + 7)(9l + 8)(9l + 10)
3l(l + 2)(6l + 1)(9l + 7)2 > 1. □

Lemma 5.11. Suppose p = 3, l ⩾ 6, and define

λ(l) = (6l − 4 3. . . . 3l + 5, 3l + 2, 3l, 3l − 4 3. . . . 2).

Then λ(l) is not homogeneous.
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Proof. Define
µ(l) = (6l − 4 3. . . . 3l + 5, 3l + 3, 3l − 1, 3l − 4 3. . . . 2).

Then µ
reg
(l) = λ

reg
(l) , and

ddim(λ(l))

ddim(µ(l))
=

(l + 1)(3l − 4)(6l − 1)(9l − 1)
(l − 1)(3l − 1)(6l + 5)(9l − 2)

,

which is greater than 1 for l ⩾ 6. □

Lemma 5.12. Suppose p = 3, l ⩾ 3, and define

λ(l) = (3l, 3l − 2 3. . . . 4, 3, 1),

µ(l) =

{
(3l + 1 3. . . . 10, 6, 4, 3, 1) if l ⩾ 4
(13, 7, 4) if l = 3.

Then ddim(λ(l)) > ddim(µ(l)).

Proof. The lemma easily holds for l = 3. So assume now that l ⩾ 4. Then the bar-length formula
gives

ddim(λ(l+1))ddim(µ(l))

ddim(µ(l+1))ddim(λ(l))
=

l(3l + 7)(3l + 10)(6l + 5)
(l + 2)(3l + 2)(3l + 11)(6l + 1)

,

which is greater than 1 for l ⩾ 4. Since ddim(λ(4)) > ddim(µ(4)) the result follows. □

Lemma 5.13. Suppose p = 3, l ⩾ 1, and define

λ(l) = (3l, 3l − 2 3. . . . 1),

µ(l) = (3l + 1 3. . . . 4).

Then ddim(λ(l)) ⩾ ddim(µ(l)), with equality if and only if l = 1.

Proof. The bar-length formula gives

ddim(λ(l))

ddim(µ(l))
=

(3l + 5)(3l + 8) . . . (6l − 1)
(3l + 4)(3l + 7) . . . (6l − 2)

,

which is obviously greater than 1 when l > 1. □

Now we prove a more general result using some of the lemmas in this section.

Proposition 5.14. Suppose p = 3, l ⩾ 3, and

λ = (3l − 1 + a1, 3l − 4 + a2, . . . ,−1 + al+1),

where:
⋄ ar ∈ {0, 1, 2} for each r;
⋄ there is at least one r ⩾ 4 for which ar ̸= 1;
⋄ if ar = 2 and r ⩾ 2 then ar−1 = 0;
⋄ if ar = 0 then r ⩽ l and ar+1 = 2.

Then λ is not homogeneous.

Proof. We claim that there is a partition µ such that µ ▷ λ, µ1 = λ1, µreg = λreg and ddim(λ) >
ddim(µ); Proposition 5.1 then implies that λ is not homogeneous.

We prove our claim by induction on l. If there is r ⩾ 5 for which ar ̸= 1 then by induction we
can assume that the claim holds with λ replaced by (λ2, λ3, . . . ), and we can use Lemma 5.2. So we
assume instead that ar = 1 for all r ⩾ 5, while a4 ̸= 1. The tuple (a1, . . . , al+1) must therefore be one of
(1, 1, 0, 2, 1, 1, . . . , 1), (2, 1, 0, 2, 1, 1, . . . , 1) or (0, 2, 0, 2, 1, 1, . . . , 1). In these cases the claim follows from
Lemmas 5.4 to 5.6 respectively (except for the small cases λ = (9, 6, 2, 1), (10, 6, 2, 1), (16, 12, 8, 7, 3),
(19, 15, 11, 10, 6, 3), (8, 7, 2, 1), (11, 10, 5, 4), (14, 13, 8, 7, 3), where we can take µ = (9, 6, 3), (10, 6, 3),
(16, 12, 9, 7, 2), (19, 15, 12, 10, 6, 2), (8, 7, 3), (11, 10, 6, 3), (14, 13, 9, 6, 3) respectively). □
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5.2. Projective modules

Now we describe a technique we will use to show that certain partitions are not homogeneous
using projective modules. The basic lemma we use is the following; for this lemma, we can take p to
be any odd prime.

Lemma 5.15. Suppose λ and ν are strict partitions with λreg = νreg.
(1) If there is a projective supermodule P such that

[P : Sλ]

[Pλreg : Sλ]
>

[P : Sν]

[Pλreg : Sν]
,

then λ is not homogeneous.
(2) If ddim(λ) > ddim(ν) then there is a projective supermodule P such that

[P : Sλ]

[Pλreg : Sλ]
>

[P : Sν]

[Pλreg : Sν]
.

Proof.
(1) If λ is homogeneous then by Brauer reciprocity [Pµ : Sλ] = 0 when µ ̸= λreg. So if P is any

projective supermodule and we write P =
⊕

µ(Pµ)⊕cµ , then

[P : Sλ] = cλreg [Pλreg
: Sλ],

[P : Sν] ⩾ cλreg [Pλreg
: Sν],

giving
[P : Sλ]

[Pλreg : Sλ]
⩽

[P : Sν]

[Pλreg : Sν]
.

(2) Recall that

ddim(λ) =
dim Sλ

[Sλ : Dλreg
]
=

∑µ[Sλ : Dµ]dim Dµ

[Sλ : Dλreg
]

.

So if ddim(λ) > ddim(ν) then there is some µ for which

[Sλ : Dµ]

[Sλ : Dλreg
]
>

[Sν : Dµ]

[Sν : Dλreg
]
.

By Brauer reciprocity, this is the same as saying

[Pµ : Sλ]

[Pλreg : Sλ]
>

[Pµ : Sν]

[Pλreg : Sν]
. □

The way we will apply Lemma 5.15 is as follows. Suppose we have a strict partition λ that we
want to prove is not homogeneous. We will find another strict partition ν with λreg = νreg, and a
pair of smaller partitions λ− and ν− with λ

reg
− = ν

reg
− and ddim(λ−) > ddim(ν−). Using part (ii) of

Lemma 5.15, we will take a projective module Q for which

[Q : Sλ− ]

[Pλ
reg
− : Sλ− ]

>
[Q : Sν− ]

[Pλ
reg
− : Sν− ]

,

and apply a suitable induction functor to obtain a projective module P with

[P : Sλ]

[Pλreg : Sλ]
>

[P : Sν]

[Pλreg : Sν]
.

Then part (i) of Lemma 5.15 gives the desired result.
The specific cases where we use this technique are in the following proposition.

Proposition 5.16. Suppose p = 3, and λ is one of the partitions

(9, 7, 4), (12, 10, 7, 4), (15, 13, 10, 7, 4), (14, 13, 9, 6, 3), (17, 16, 12, 9, 6, 3), (11, 10, 6, 3).

Then λ is not homogeneous.
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Proof. We begin with the first three cases. So let λ = (3l, 3l − 2 3. . . . 4) with 3 ⩽ l ⩽ 5, and set
ν = (3l + 1 3. . . . 7, 3). Then λreg = νreg and [Pλreg

: Sλ] = [Pλreg
: Sν] by Theorem 3.1. Also define

µi = (3l − 1 3. . . . 2) + δi for 1 ⩽ i ⩽ l, where δi is the composition which has a 1 in position i
and 0 elsewhere. It is easy to check that (µ1)reg = (µl)reg and ddim(µl) > ddim(µ1). In addition,
Theorem 3.1 shows that [P(µ1)reg

: Sµ1
] = [P(µ1)reg

: Sµl
], so by Lemma 5.15(ii) we can find a projective

module Q with [Q : Sµl
] > [Q : Sµ1

]. Now define P = f2l−2
0 Q. Then

[P : Sλ] =
l

∑
i=1

[Q : Sµi
][f2l−2

0 Sµi
: Sλ],

[P : Sν] =
l

∑
i=1

[Q : Sµi
][f2l−2

0 Sµi
: Sν].

The branching rule shows that if 1 < i < l then [f2l−2
0 Sµi

: Sλ] = [f2l−2
0 Sµi

: Sν] and

[f2l−2
0 Sµl

: Sλ] = [f2l−2
0 Sµ1

: Sν] > [f2l−2
0 Sµ1

: Sλ] = [f2l−2
0 Sµl

: Sν],

so that [P : Sλ] > [P : Sν]. So by Lemma 5.15(i) λ is not homogeneous.
Next consider the last two cases, so λ = (3l − 1, 3 − 2, 3l − 6 3. . . . 3) with 5 ⩽ l ⩽ 6. Let ν =

(3l − 1, 3l − 3, 3l − 5, 3l − 9 3. . . . 3) and again µi = (3l − 1 3. . . . 2) + δi. Then we can conclude in the
same way using µ2, µ3 and fl−1

0 instead of µl , µ1 and f2l−2
0 respectively.

Finally consider the case λ = (11, 10, 6, 3). Here we take a slightly different (and simpler) ap-
proach. We let ν = (11, 10, 7, 2). Then P(8,5,3,2) ∼ S(11,5,2) ⊕ (S(8,5,3,2))⊕2 (looking at decomposition
matrices or by [Mü, Theorem 4.4]). The branching rule shows that [f3

0f3
1f6

0P(8,5,3,2) : Sν] = 0, while
[f3

0f3
1f6

0P(8,5,3,2) : Sλ] is a non-zero multiple of [P(8,5,3,2) : S(8,5,3,2)]. So Lemma 5.15 applies to show that
λ is not homogeneous. □

6. Wreath products and RoCK blocks

In this section we analyse certain wreath product algebras that arise in the work of Kleshchev and
Livesey [KL] on RoCK blocks, and use these to derive information on modules labelled by special
partitions.

6.1. Wreath products

First we recall some more theory of superalgebras; let F be an arbitrary field throughout this sec-
tion. For any vector superspace V and 0 ̸= v a homogeneous vector in V we let v ∈ {0, 1} be
the parity of v. We use the usual tensor product rule for superalgebras A and B: if a1, a2 ∈ A and
b1, b2 ∈ B are all homogeneous, then (a1 ⊗ b1)(a2 ⊗ b2) = (−1)b1a2(a1a2)⊗ (b1b2) in A ⊗ B.

We will be mainly concerned with the superalgebra AF = F[u]/(u3), where the generator u is
homogeneous of odd degree. We usually write write AF just as A if F is understood. For any d ⩾ 0
we define the wreath superproduct A ≀s Sd as in [KL, §2.2a]: as a vector superspace this is A⊗d ⊗FSd
with Sd in even degree. The multiplication rule is defined by the tensor product rule above for
multiplying in A⊗d, together with

(1⊗d; σ)(v1 ⊗ · · · ⊗ vd; π) = (−1)[σ;v1,...,vd](vσ−1(1) ⊗ · · · ⊗ vσ−1(d); σπ),

for σ, π ∈ Sd and homogeneous v1, . . . , vd ∈ A, where

[σ; v1, . . . , vd] = |{(i, j) | 1 ⩽ i < j ⩽ d, σ(i) > σ(j), vi = 1 = vj}|.
Our aim in this section is to develop a small part of the representation theory of A ≀s Sd (mimicking

the work of Chuang and Tan [CT]) to be able to apply the results from [KL]; in particular, we will be
interested in finding bounds for the diagonal Cartan invariants of A ≀s Sd.

We begin by constructing some A ≀s Sd-supermodules. (We will view A ≀s Sd as a superalgebra,
although as we shall see every simple supermodule is of type M, so it makes little difference whether
we consider modules or supermodules.) For any A-supermodule V and FSd-module W (viewed as
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a supermodule concentrated in degree 0) we define a module T(V, W), which is V⊗d ⊗W as a vector
superspace, with the action of A ≀s Sd given by

(1⊗(i−1) ⊗ u ⊗ 1⊗(d−i); 1)v1 ⊗ · · · ⊗ vd ⊗ w = (−1)∑i−1
j=1 vd v1 ⊗ vi−1 ⊗ · · · ⊗ uvi ⊗ vi+1 ⊗ · · · ⊗ vd ⊗ w

(1 ⊗ · · · ⊗ 1; σ)v1 ⊗ · · · ⊗ vd ⊗ w = (−1)[σ;v1,...,vd]vσ−1(1) ⊗ · · · ⊗ vσ−1(d) ⊗ σw

for homogeneous v1, . . . , vd ∈ V, w ∈ W and σ ∈ Sd.
This construction allows us to classify the simple supermodules for A ≀s Sd: let J(R) denote the

Jacobson radical of a ring R. It is clear that any element of A ≀s Sd of the form (1⊗(i−1) ⊗ u⊗ 1⊗(d−i); 1)
or of the form (1⊗d; m) with m ∈ J(FSd) lies in J(A ≀s Sd). Hence A ≀s Sd/J(A ≀s Sd) ∼= FSd/J(FSd),
and every simple A ≀s Sd-module arises by taking a simple FSd-module and letting u act as 0. In
other words, the simple A ≀s Sd-modules are the modules T(F, S) as S ranges over the simple FSd-
modules, where F is regarded as an A-module with u acting as 0. In particular, if char(F) = 0 then
the simple FSd-modules are the Specht modules S λ for partitions λ of d, while if char(F) = p > 0
then the simple FSd-modules are the James modules Dλ for p-regular partitions λ.

We will adapt techniques from [CT] to find the composition factors of T(A, S δ) in characteristic 0,
which will enable us to find the diagonal Cartan invariants. First we introduce another construction:
if M is an A ≀s Sd-module and W an FSd-module then we define the A ≀s Sd-module M ⊘ W to be
the vector space M ⊗ W with

(u1 ⊗ · · · ⊗ ud; σ)(m ⊗ w) = ((u1 ⊗ · · · ⊗ ud; σ)m)⊗ σw.

It is clear from the definition that T(V, W)⊘ W ′ ∼= T(V, W ⊗ W ′).
The regular A-module has three composition factors all isomorphic to F; we will use this to

find filtrations and composition factors of the modules T(A, S ν). Given partitions α, β, γ, ν with
|α| + |β| + |γ| = |ν|, let cν

αβγ denote the corresponding Littlewood–Richardson coefficient, i.e. the

multiplicity of S ν as a composition factor of S α ⊗ S β ⊗ S γ ↑S|ν|
S|α|,|β|,|γ|

in characteristic 0; here and
below, Sa,b,c denotes the Young subgroup Sa ×Sb ×Sc ⩽ Sa+b+c. For a partition β let β′ denote the
conjugate (or transpose) partition.

Now we can give the composition factors of the modules of the modules T(A, S ν) in characteris-
tic 0.

Lemma 6.1. Suppose char(F) = 0, and let ν, π be partitions of d. Then

[T(A, S ν) : T(F, S π)] = ∑
α,β,γ∈P

|α|+|β|+|γ|=d

cν
αβγcπ

αβ′γ.

Proof. We adapt the results in [CT, §4] to wreath superproducts, specialising to the case of A ≀s Sd.
Because S (d) is the trivial Sd-module, we can write T(A, S ν) = T(A, S (d))⊘S ν. So if 0 ⩽ M1 ⩽

· · · ⩽ Mh = T(A, S (d)) is a filtration of T(A, S (d)), then

0 ⩽ M1 ⊘S ν ⩽ · · · ⩽ Mh ⊘S ν

is a filtration of T(A, S ν). We thus start by finding a filtration of T(A, S (d)). As vector spaces we
identify T(A, S (d)) and A⊗d.

The vector space A⊗d has a basis U = {ue1 ⊗ · · · ⊗ ued | 0 ⩽ ei ⩽ 2 for each i}. For any composition
(a, b, c) of d let Ua,b,c be the subset of U consisting of all basis elements ue1 ⊗ · · · ⊗ ued in which 1, u, u2

appear a, b, c times respectively.
From the filtration 0 ⊆ ⟨u2⟩ ⊆ ⟨u, u2⟩ ⊆ A of A we have a filtration

0 = M0 ⩽ · · · ⩽ M2d+1 = T(A, S (d))

where Mi = ⟨Ua,b,c | b + 2c ⩾ 2d + 1 − i⟩. For any (a, b, c) with b + 2c = 2d + 1 − i, let Va,b,c =
(⟨Ua,b,c⟩F ⊕ Mi−1)/Mi−1. Then

Mi

Mi−1

∼=
⊕

a,b,c⩾0
b+2c=2d+1−i

Va,b,c,
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so that T(A, S (d)) is filtered by the modules Va,b,c as (a, b, c) ranges over compositions of d. We will
show that

Va,b,c
∼= T

(
F, (S (a) ⊗S (1b) ⊗S (c))↑Sd

Sa,b,c

)
. (6.2)

It is easy to see that any vector of the form (1⊗(i−1) ⊗ u ⊗ 1⊗(d−i); 1) acts as 0 on both modules. So we
only need to compare the action of the elements (1⊗d; σ).

Let v be the image of 1⊗a ⊗ u⊗b ⊗ (u2)⊗c in Va,b,c and R be a set of representatives of Sd/Sa,b,c.
Then {(1⊗d; π)v | π ∈ R} is a basis of Va,b,c. To work out the action of Sd on this basis, take σ ∈ Sd
and π ∈ R, and let ρ ∈ R be such that σπ ∈ ρSa,b,c. Then ρ−1σπ ∈ Sa,b,c; we let σ be the permutation
induced by ρ−1σπ on {a + 1, . . . , a + b}.

Then

(1⊗d; σ)(1⊗d; π)v = (1⊗d; ρ)(1⊗d; ρ−1σπ)v = (1⊗d; ρ)(−1)sgn(σ)v = (−1)sgn(σ)(1⊗d; ρ)v.

This action coincides with the action of Sd on (S (a) ⊗S (1b) ⊗S (c))↑Sd
Sa,b,c

(with basis {πw | π ∈ R}
where w is any non-zero element of S (a) ⊗S (1b) ⊗S (c)), so that (6.2) follows.

Thus T(A, S (d)) has a filtration with a factor isomorphic to T(F, (S (a) ⊗ S (1b) ⊗ S (c))↑Sd
Sa,b,c

) for

each composition (a, b, c) of d. Hence T(A, S ν) ∼= T(A, S (n)) ⊘ S ν has a filtration with a factor
isomorphic to

T(F, (S (a) ⊗S (1b) ⊗S (c))↑Sd
Sa,b,c

)⊘S ν ∼= T(F, ((S (a) ⊗S (1b) ⊗S (c))↑Sd
Sa,b,c

)⊗S ν)

∼= T(F, ((S (a) ⊗S (1b) ⊗S (c))⊗S ν↓Sd
Sa,b,c

)↑Sd
Sa,b,c

)

for each (a, b, c). Now

(S (a) ⊗S (1b) ⊗S (c))⊗S ν↓Sd
Sa,b,c

∼=
⊕

α∈P(a)
β∈P(b)
γ∈P(c)

(S (a) ⊗S (1b) ⊗S (c))⊗ (S α ⊗S β ⊗S γ)⊕cν
αβγ

∼=
⊕

α∈P(a)
β∈P(b)
γ∈P(c)

(S α ⊗S β′ ⊗S γ)⊕cν
αβγ

so that [
T(F, (S (a) ⊗S (1b) ⊗S (c))↑Sd

Sa,b,c
)⊘S ν : T(F, S π)

]
= ∑

α∈P(a)
β∈P(b)
γ∈P(c)

cν
αβγcπ

αβ′γ,

and the result follows. □

Now we turn to Cartan invariants.

Lemma 6.3. The projective A ≀s Sd-modules are precisely the modules T(A, P), for P a projective FSd-
module. If S is a simple FSd-module with projective cover P(S), then T(A, P(S)) is the projective
cover of T(F, S).

Proof. As T(A,FSd) ∼= A ≀s Sd and T(A, P ⊕ Q) = T(A, P) ⊕ T(A, Q) it is clear that the modules
T(A, P) are projective, and we have a direct sum decomposition

A ≀s Sd =
⊕

S

T(A, P(S))⊕dim S,

summing over all simple FSd-modules S. The simple A ≀s Sd-modules are the modules T(F, S), with
dim T(F, S) = dim S for each S. So the summands in the expression above are indecomposable, and
therefore every projective module occurs as T(A, P) for some projective P. Moreover, it is easy to
check that T(F, S) occurs as a quotient of T(A, P(S)), and therefore T(A, P(S)) is the projective cover
of T(F, S). □
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Now we can explicitly find the diagonal Cartan invariants for A ≀s Sd in characteristic 0. Let C =
(cν,π) be the Cartan matrix of A ≀s Sd with rows and columns indexed by partitions of d, so that cν,π
is the multiplicity of T(F, S ν) as a composition factor of the projective cover of T(F, S π).

Lemma 6.4. Suppose char(F) = 0 and ν ∈ P(d). Then cν,ν ⩾ 2d + 1, with equality if and only if
γ = (d) or (1d).

Proof. Because FSd is semisimple, S ν is it own projective cover, and therefore T(A, S ν) is the pro-
jective cover of T(F, S ν). So by Lemma 6.1

cν,ν = [T(A, S ν) : T(F, S ν)] = ∑
α,β,γ∈P

|α|+|β|+|γ|=d

cν
αβγcν

αβ′γ.

We first recall the following simple fact about the Littlewood–Richardson coefficients: if β ⊆ ν and
0 ⩽ i ⩽ d − |β|, there exist partitions α ∈ P(i) and γ ∈ P(d − |β| − i) for which cν

αβγ > 0.
Assume first that γ ̸= (d), (1d). Then d ⩾ 3 and ∅, (1), (2, 1) ⊆ γ. So (using the fact above)

cγ,γ ⩾ ∑
α,γ∈P

|α|+|γ|=d

(cν
α∅γ)

2 + ∑
α,γ∈P

|α|+|γ|=d−1

(cν
α(1)γ)

2 + ∑
α,γ∈P

|α|+|γ|=d−3

(cν
α(2,1)γ)

2

⩾ (d + 1) + d + (d − 2)
> 2d + 1.

Now assume that γ = (d) (the case γ = (1d) being similar). In this case we use the fact that

c(d)αβγ =

{
1 if α = (|α|), β = (|β|), γ = (|γ|)
0 otherwise

and

c(d)αβ′γ =

{
1 if α = (|α|), β = (1|β|), γ = (|γ|)
0 otherwise,

which gives

c(d),(d) =
d

∑
i=0

(c(d)
(i)∅(d−i))

2 +
d−1

∑
i=0

(c(d)
(i)(1)(d−i−1))

2 = (d + 1) + d = 2d + 1. □

Now we prove a similar result in characteristic 3. Given π ∈ P(d), let S
π

denote a 3-modular
reduction of S π. Recall that if µ is a 3-regular partition then Dµ denotes the James module for
Sd in characteristic 3. Let C denote the Cartan matrix for A ≀s Sd in characteristic 3, with entries
cµ,π = [T(F, P(Dπ))) : T(F, Dµ)].

Lemma 6.5. Suppose char(F) = 3, d ⩾ 3 and µ is a 3-regular partition of d. Then cγ,γ > 2d + 1.

Proof. In this proof A denotes the algebra F(u)/(u3)Given π ∈ P(d), let dπµ = [S
π

: Dµ] be the
corresponding decomposition number for FSd. Then it is clear that dπµ = [T(F, S

π
) : T(F, Dµ)]. So,

taking the result of Lemma 6.1 and reducing modulo 3,

[T(A, S
ν
) : T(F, Dµ)] = ∑

π∈P(d)
[T(AC, S ν) : T(C, S π)]dπµ.

So by Brauer reciprocity

cµ,µ = [T(A, P(Dµ)) : T(F, Dµ)] = ∑
ν∈P(d)

dνµ ∑
π∈P(d)

[T(AC, S ν) : T(C, S π)]dπµ.

Taking just the terms with ν = π gives

cµ,µ ⩾ ∑
ν∈P(d)

[T(AC, S ν) : T(C, S ν)]d2
νµ = ∑

ν∈P(d)
cµ,µd2

νµ.
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If µ ̸= (d) then dµµ = 1 and cµµ > 2d + 1 by Lemma 6.4, so we are done (note that µ cannot equal (1d)
because d ⩾ 3 and µ is 3-regular). In the case µ = (d) the assumption that d ⩾ 3 means that there is
a partition ν ̸= µ for which dνµ > 0, and so

cµ,µ ⩾ cµµ + cνν > 2d + 1,

again using Lemma 6.4. □

6.2. Special partitions and RoCK blocks

Now we consider special partitions more closely. Even though our main theorem excludes the case
of special partitions, we still need to know something about modules labelled by special partitions in
order to prove our main result. To do this, we combine our analysis of wreath products in Section 6
with the results of Kleshchev and Livesey.

Recall that a strict partition is special if it has the form ν + 3α with ν a 3-bar core and α a partition
with l(α) ⩽ l(ν). In the case where λ = ν + 3α where the non-zero parts of ν are congruent to 1
modulo 3 and l(ν) ⩾ |α|, the block of T|λ| containing Sλ is a spin RoCK block as defined in [KL]. We
first prove that when considering partitions of the above given form we may always assume that we
are in a RoCK block.

Lemma 6.6. Let α be a partition. If there exists a 3-bar core ν with l(ν) ⩾ l(α) such that ν + 3α is
homogeneous, then π + 3α is homogeneous for all 3-bar cores π with l(π) ⩾ l(α).

Proof. It is enough to prove that if l ⩾ l(λ) and

π = (3l − 2 3. . . . 1), ν = (3l − 1 3. . . . 2), ψ = (3l + 1 3. . . . 1),

then ν + 3α is homogeneous if and only if π + 3α is, and similarly with ψ in place of π.
It follows by the definition that all parts of ν+ 3α are congruent to 2 modulo 3, so that (ν+ 3α)−1 =

π + 3α and (π + 3α)+1 = ν+ 3α. Similarly we find that (ν+ 3α)+0 = ψ+ 3α and (ψ+ 3α)−0 = ν+ 3α.
The lemma then follows from Lemmas 4.1 and 4.2. □

Next we prove a column removal result for α.

Lemma 6.7. Suppose α is a partition. Let l = l(α) and

ν = (3l − 2 3. . . . 1), π = (3l − 1 3. . . . 2), β = (α1 − 1, . . . , αl − 1).

If ν + 3α is homogeneous then so is π + 3β.

Proof. Note that all parts of ν + 3α are congruent to 1 modulo 3, so π + 3β = (ν + 3α)−0. The lemma
then follows from Lemma 4.1. □

The converse does not necessarily hold, as the following theorem shows.

Theorem 6.8. Let ν = (3l − 2 3. . . . 1), where l ⩾ d ⩾ 3. Then ν + (3d) is not homogeneous.

To prove Theorem 6.8, we will use results on RoCK blocks proved recently by Kleshchev and
Livesey, specialising to the case p = 3. So we fix ν = (3l − 2 3. . . . 1) and d ⩽ l, and let Bν,d be the
block of T|ν|+3d with bar core ν and bar-weight d. (We will abuse notation by saying that a 3-strict
partition λ lies in Bν,d if it has 3-bar core ν and 3-bar-weight d.)

Lemma 6.9. The 3-strict partitions in Bν,d are the partitions (ν + 3α) ⊔ 3β, for partitions α, β with
|α|+ |β| = d. Such a partition is restricted if and only if α = ∅.

Proof. The first statement is easily proved by induction on d: a partition in Bν,d is obtained by adding
a 3-bar to a partition in Bν,d−1. By induction such a partition can be written in the form (ν + 3α−) ⊔
3β− where |α−|+ |β−| = d − 1. Since d − 1 < l, the last non-zero part of this partition equals 1. So
the only way to add a 3-bar is to increase one of the parts by 3. Increasing one of the parts congruent
to 1 modulo 3 corresponds to adding a node to α−, while increasing one of the parts divisible by 3
corresponds to adding a node to β. So we obtain a partition of the required form.

The second statement is easy to check. □
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Now we compute the diagonal Cartan entry for the simple module Dν⊔(3d).

Lemma 6.10. Let ν and d be as above, and let µ = ν ⊔ (3d). Then [Pµ : Dµ] = 2d + 1.

Proof. Lemma 6.9 shows that µ is the most dominant restricted 3-strict partition in Bν,d. So Theo-
rem 3.1 gives

Pµ ∼ ∑
λ∈P0

λreg=µ

[Pλreg
: Sλ]Sλ,

where the coefficient [Pλreg
: Sλ] is given in Theorem 3.1. So to obtain the formula for [Pµ] we need

to find which strict partitions λ satisfy λreg = µ. We claim that λreg = µ if and only if λ has the form
(ν + (3d−i)) ⊔ (3i) for 0 ⩽ i ⩽ d. The “if” part is easy to check by directly comparing ladders. For
the “only if” part, assume λ ∈ Bν,d and use Lemma 6.9 to write λ = (ν + 3α) ⊔ 3β for some partition
α, β with |α|+ |β| = d. If l(β) ⩾ 2 then l(λreg) ⩾ l(λ) ⩾ l + 2 > l(µ), so that λreg ̸= µ. If α1 ⩾ 2
then λ contains the node (1, 3l + 4) which lies in ladder 2l + 2, so that l(λreg) ⩾ l + 2 > l(µ), so again
λreg ̸= µ.

Hence

[Pµ : Dµ] =
d

∑
i=0

[Pµ : Sν+(3d−i)⊔(3i)][Sν+(3d−i)⊔(3i) : Dµ].

Combining the two equations in Theorem 3.1, we find that if λreg = µ then [Pµ : Sλ][Sλ : Dµ] = 2l3(λ).
We can easily see that l3((ν + (3d−i)) ⊔ (3i)) equals 0 if i = 0, or 1 if i ⩾ 1. The result follows. □

Now we summarise the results we need from [KL]. Keeping ν, d as above, the assumption that
d ⩽ l means that Bν,d is a RoCK block. In view of Lemma 6.10 we can replace l with a larger value,
and we choose l such that l ≡ 2d (mod 4) . Now we claim that n = |ν| + 3d is even and that the
block Bν,d is of type M. To see that n is even, observe that |ν| = l(3l − 1)/2 ≡ ⌈l/2⌉ (mod 2) , so if
l ≡ 2d (mod 4) , then n = |ν|+ 3d ≡ d + 3d ≡ 0 (mod 2) . To see that the block Bν,d is of type M,
observe that the number of 1-nodes of ν is l(l − 1)/2, so that the number of 1-nodes of a partition
with 3-bar core ν and 3-bar-weight d is d + l(l − 1)/2 ≡ d + ⌊l/2⌋ (mod 2) .

Rather than treating Tn directly, Kleshchev and Livesey work with the Sergeev superalgebra T Cn =
Tn ⊗ Cn, where Cn is the Clifford algebra on n generators. The assumption that n is even guarantees
that T Cn is Morita superequivalent to Tn. We let BCν,d be the (super)block corresponding to Bν,d.
Now we need the following result, which relates RoCK blocks to the wreath products A ≀s Sd studied
in Section 6.

Theorem 6.11. [KL, Theorem F] Suppose ν, d are as above, and let r0 denote the number of nodes of
ν of residue 0. Then there is an idempotent f ∈ BCν,d such that

fBCν,d f ∼= (A ≀s Sd)⊗ Cr0+2d.

Our assumption that l is even guarantees that the integer r0 + 2d is even, which means that (A ≀s
Sd)⊗ Cr0+2d is Morita equivalent to A ≀s Sd. We want to examine which simple BCν,d-modules are
killed by the idempotent f .

Proposition 6.12. Let D be the simple supermodule corresponding to Dν⊔(3d) under the Morita equiv-
alence between Bν,d and BCν,d. Then f D = 0.

Proof. We prove Proposition 6.12 by comparing diagonal Cartan entries. In general, if e is an idem-
potent in an algebra R and M is a simple R module such that eM ̸= 0, then the diagonal Cartan entry
[P(eM) : eM] for eRe is the same as the diagonal Cartan entry [P(M) : M] for R. By Lemma 6.10 (and
our assumption that the block Bν,d is of type M) the Cartan number [P(D) : D] for Bν,d is 2d + 1. On
the other hand by Lemma 6.5 any diagonal entry of the Cartan matrix of A ≀s Sd is larger than 2d + 1.
So f D must be zero. □

Next we want to consider the BCν,d-module corresponding to Sν+(3d).
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Proposition 6.13. Let S be the supermodule corresponding to Sν+(3d) under the Morita equivalence
between Bν,d and BCν,d. Then f S ̸= 0.

Proof. To prove this, we need to examine the idempotent f in more detail and consider weight
spaces. The way f is constructed means that if M is a module then f M ̸= 0 if and only if M has
a weight i = (i1, . . . , in) such that:

⋄ (i1, . . . , i|ν|) is a weight of sν;
⋄ for j = 1, . . . , d the residues i|ν|+3j−2, i|ν|+3j−1, i|ν|+3j equal 0, 0, 1 in some order.

To show that S has such a weight, we use Proposition 2.4, and we need to show that there is a
standard shifted (ν + (3d))-tableau with it of the above form. But this is straightforward: we take
any standard shifted ν-tableau, and then for j = 1, . . . , d map |ν|+ 3j − 2, |ν|+ 3j − 1, |ν|+ 3j to the
nodes (j, νj + 1), (j, νj + 2), (j, νj + 3). □

Proof of Theorem 6.8. Let S be the supermodule corresponding to Sν+(3d) under the Morita equiv-
alence between Bν,d and BCν,d, and let f ∈ BCν,d be the idempotent described above. By Propo-
sition 6.13 S has a a composition factor M such that f M ̸= 0. On the other hand, Theorem 3.1
and Proposition 6.12 show that S also has a composition factor D = D(ν+(3d))reg

= Dν⊔(3d) such that
f D = 0. So S has composition factors of at least two isomorphism types. □

Corollary 6.14. Let ν be a 3-bar core and α = (ab) with b ⩽ l(ν). Then ν + 3α is homogeneous if and
only if α = (a) or α = (12).

Proof. If α = (a) then ν + 3α is homogeneous by Theorem 3.3 and Lemma 6.6. If α = (12) we can
argue again by Lemma 6.6 using the fact that the composition factors of S(7,4) are known.

Assume next that b = 2 and a ⩾ 2. Since (10, 7) is not homogeneous (from known decomposition
numbers), ν + 3α is also not homogeneous by Lemmas 6.6 and 6.7. For the case where b ⩾ 3 and
a = 1 Theorem 6.8 implies that ν + 3α is not homogeneous, and then the general case where b ⩾ 3
follows using Lemma 6.7. □

7. Proof of Theorem 1.1

In this final section we give the proof of Theorem 3.5, which is a reformulation of our main re-
sult Theorem 1.1. We begin with some combinatorial lemmas we will need later. The proof of the
following lemma is an easy exercise.

Lemma 7.1. For l ⩾ 1 define the partitions

σ(l) = (3l − 2 3. . . . 7, 6, 4, 3, 1), τ(l) = (3l − 1 3. . . . 8, 6, 5, 3, 2).

Then σ(l)+1 = τ(l) and τ(l)+0 = σ(l + 1).

Lemma 7.2. Suppose λ is a strict partition with no parts congruent to 1 modulo 3. Then (λ+0)+1 has
no parts congruent to 1 modulo 3.

Proof. Assume for a contradiction that (λ+0)+1
r = 3a + 1. Then λ+0

r = 3a + 1 and (r, 3a + 2) is not a
strictly-addable node of λ+0. This can only happen if r ⩾ 2 and λ+0

r−1 = 3a + 2. This in turn means
that λr−1 = 3a + 2 and (r − 1, 3a + 3) is not a strictly-addable node of λ. This is only possible if r ⩾ 4
and (λr−3, λr−2) = (3a + 4, 3a + 3). But this contradicts the hypothesis. □

Lemma 7.3. Suppose λ is a strict partition with no parts congruent to 1 modulo 3. Then l((λ+0)+1) =
l(λ) + 1 and (λ+0)+1

l((λ+0)+1)
= 2.

Proof. Let l = l(λ). Then λ+0
l+1 = 1 because λl ⩾ 2 (or l = 0), so that (l + 1, 1) is a strictly-addable

node of λ. The result then follows from Lemma 7.2. □

Lemma 7.4. Suppose λ is a strict partition with no parts congruent to 1 modulo 3. Suppose 1 ⩽ r <
s ⩽ l(λ) and x ⩾ 1 such that

(λr, . . . , λs) = (3x, 3x − 1 3. . . . 3(x − r + s + 1)− 1)
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Then (λ+0)+1
r ⩾ 3x + 2 and

((λ+0)+1
r+1, . . . , (λ+0)+1

s ) = (3x, 3x − 1 3. . . . 3(x − r + s + 2)− 1).

Proof. The first statement holds because λr−1 ⩾ 3x + 2 if r ⩾ 2. The second statement holds by
Lemma 7.2. □

Now we turn to Theorem 1.1. We fix p = 3 for the remainder of the paper. Let

H0 = {λ | λ is special} ,

H1 = { (3a) | a ⩾ 2} ,

H2 = {ν ⊔ (3) | ν a 3-bar core} ,

H3 = {(2, 1), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 3, 2, 1), (5, 4, 3, 1),

(5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1), (8, 5, 3, 2, 1)}.

First we deal with the “if” part, and check that the partitions i H1 ∪ H2 ∪ H3 are homogeneous.
For the partitions in H1 this follows from Theorem 3.3, and for the partitions in H2 we use The-
orem 3.4. For partitions in H3 we can use known decomposition numbers for all except the last
partition (8, 5, 3, 2, 1). In particular, we know that (7, 4, 3, 2, 1) is homogeneous. Since (8, 5, 3, 2, 1) =
(7, 4, 3, 2, 1)+1, the partition (8, 5, 3, 2, 1) is also homogeneous in view of Lemma 4.2.

It remains to prove the “only if” part of the theorem. So we assume λ is a strict partition with
λ /∈ H0 ∪ H1 ∪ H2 ∪ H3, and we will show that λ is not homogeneous. We use induction on n = |λ|.
So we assume the result is true for all partitions smaller than λ. Recall from Lemma 4.1 that if there
is i ∈ {0, 1} for which λ−i is not homogeneous, then λ is not homogeneous. So if there is i such
that λ−i /∈ H0 ∪ H1 ∪ H2 ∪ H3 ∪ {λ}, then we are done by induction. So we assume for the rest of
this section that λ−0, λ−1 ∈ H0 ∪ H1 ∪ H2 ∪ H3 ∪ {λ}. Because λ must have a strictly-removable
i-node for some i, there is at least one i for which λ−i ̸= λ. So we choose i such that λ−i ̸= λ,
and we let a = n − |λ−i| = ϵ̂i(λ). In view of Lemma 4.1 we can assume that ϵi(λ

reg) = a and
(λ−i)reg = (λreg)▽i = ẽa

i (λ
reg), and therefore λreg = f̃a

i ((λ
−i)reg).

With these assumptions in place, we consider several cases and subcases.

Case 1. Suppose λ−i = (m) for some m < n. Then i = 0 and λ = (n − 1, 1) with n ̸≡ 2 (mod 3) and
n ⩾ 6. Now the theorem follows by Theorem 3.3.

Case 2. Suppose λ−i is one of the partitions (2, 1), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 3, 2, 1), (5, 4, 3, 1),
(5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1), (8, 5, 3, 2, 1).

Since ϵ̂i(λ
−i) = 0 and ϕ̂i(λ

−i) ⩾ 1, it follows that

λ−i =

{
(4, 3, 2) or (5, 4, 3, 2) if i = 0
(4, 3, 2, 1), (5, 4, 3, 1) or (7, 4, 3, 2, 1) if i = 1.

Since λreg = f̃a
i ((λ

−i)reg) (and λ−i = (λ−i)reg in each of the above cases), it follows that

λ ∈ {(4, 3, 2, 1), (5, 4, 3, 2, 1), (6, 4, 3, 2, 1), (7, 4, 3, 2, 1), (5, 3, 2, 1),

(5, 4, 3, 2), (7, 5, 3, 2, 1), (8, 4, 3, 2, 1), (8, 5, 3, 2, 1)}.

But the assumption that λ /∈ H3 then gives

λ ∈ {(6, 4, 3, 2, 1), (7, 5, 3, 2, 1), (8, 4, 3, 2, 1)}.

The case λ = (6, 4, 3, 2, 1) can be excluded by consulting decomposition matrices. If λ = (7, 5, 3, 2, 1)
or (8, 4, 3, 2, 1) then i = 1; but λ−0 = (6, 5, 3, 2) or (8, 4, 3, 2), so λ−0 /∈ H0 ∪ H1 ∪ H2 ∪ H3 ∪ {λ},
contrary to assumption.



26 Matthew Fayers and Lucia Morotti

Case 3. Suppose λ−i = (3l − 2 3. . . . 4, 3, 1) with l ⩾ 1. Since ϵ̂0(λ−i) > 0, we deduce that i = 1
and a ⩽ ϕ̂1(λ

−1) = l. In fact a < l, since if a = l then λ = (3l − 1 3. . . . 2) ⊔ (3) ∈ H2, contrary to
assumption.

Since λ−1 is restricted, (λ−1)reg = λ−1. So

λreg = f̃a
1((λ

−1)reg) = (3l − 2 3. . . . 3a + 1, 3a − 1 3. . . . 2) ⊔ (3)

and then ϵ̂0(λ) = ϵ0(λreg) = max{0, 2(l − a)− 2a − 1}.
By assumption a ⩾ 1, so that (l + 1, 2) must be added to λ−1 to obtain λ (otherwise λreg would

not have the right form). In the first l − 1 rows of λ there are a − 1 parts which are congruent to
2 modulo 3 and l − a parts which are congruent to 1. Now we give a lower bound for ϵ̂0(λ): in
each row j ⩽ l − 2 for which λj ≡ 1 (mod 3) there is a strictly-removable 0-node, and if in addition
λj+1 ̸= λj − 2 there are two strictly-removable 0-nodes. Hence

ϵ̂0(λ) ⩾ max{l − a − 1, 2(l − a)− a − 1},

with equality only if λl−1 = 4. So

max{0, 2(l − a)− 2a − 1} = ϵ0(λ
reg) = ϵ̂0(λ) ⩾ {l − a − 1, 2(l − a)− a − 1}.

This contradicts the assumption that 1 ⩽ a < l, except in the case where a = l − 1 and

λ = (3l − 1 3. . . . 8, 4, 3, 2).

When l = 2 this partition lies in H3, so assume l ⩾ 3, and let

ν = λ+0 = (3l + 1 3. . . . 10, 4, 3, 2, 1).

µ = (3l + 1 3. . . . 10, 9, 1).

Then µreg = νreg, and we claim that ddim(µ) < ddim(ν). For l = 3 this can be checked directly, and
for l ⩾ 4 it follows by induction using Lemma 5.2.

So ν is not homogeneous, and hence neither is λ.

Case 4. Suppose λ−i = (3l − 2 3. . . . 1) + 3α for some partition α with l(α) ⩽ l. Then ϵ̂0(λ−i) > 0, so
i = 1 and a ⩽ ϕ̂1(λ

−1) = l. In fact we can assume a < l, since if a = l then λ = (3l − 1 3. . . . 2) + 3α ∈
H0.

Since all parts of λ−1 are congruent to 1 modulo 3,

(λ−1)reg = (λ−1
1 )reg + · · ·+ (λ−1

l )reg

and therefore

λreg = f̃a
1((λ

−1)reg) = (λ−1
1 + 1)reg + · · ·+ (λ−1

a + 1)reg + (λ−1
a+1)

reg + · · ·+ (λ−1
l )reg.

It follows that

ϵ0(λ
reg) = max{0, 2(l − a)− δ − 2a}

with δ = 1 if λ−1
l = 1 and δ = 0 otherwise. On the other hand, since λ is obtained from λ−1 by

adding nodes at the end of a rows we can use reasoning similar to the previous case to obtain

ϵ̂0(λ) ⩾ l − a + max{0, l − 2a − δ} = max{l − a, 2(l − a)− δ − a}.

Now the fact that ϵ0(λreg) = ϵ̂0(λ) contradicts the assumption that 1 ⩽ a < l.

We have now dealt with all cases where λ−1 ̸= λ. So for the remaining cases we assume λ−1 = λ.
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Case 5. Suppose λ−1 = λ and λ−0 = (3l − 1 3. . . . 5, 3, 2) with l ⩾ 1. In this case a ⩽ ϕ̂0(λ−0) = 2l + 1
and (λ−0)reg = λ−0.

First suppose a = 1. Then λ = λreg = (3l − 1 3. . . . 5, 3, 2, 1), and the assumption that λ−1 = λ
means that l = 1, so that λ = (3, 2, 1) ∈ H3.

So we can assume a ⩾ 2. Because λreg = f̃a
0(λ

−0), the nodes added to λ−0 to obtain λ must be
(l + 2, 1), (l + 1, 3) and a − 2 nodes in rows 1, . . . , l − 1. Since λ is strict, the node (l, 4) must be
added, so that in particular a ⩾ 3. If l = 1 then λ = (4, 3, 1) ∈ H2, so assume from now on that l ⩾ 2.
So if we let ar be the number of added nodes in row r for 1 ⩽ r ⩽ l − 1, then each ar ∈ {0, 1, 2}, and
λ is determined by (a1, . . . , al−1). The assumption that λ−1 = λ means that there is no 1 ⩽ r ⩽ l − 2
for which ar = 0 and ar+1 < 2 (otherwise λ would have a strictly-removable 1-node in row r).

Now consider the partition λ+1. This has a strictly-addable 0-node (l + 3, 1); if it has any strictly-
removable 0-nodes, these lie in shorter ladders, and so ϵ̂0(λ+1) > ϵ0((λ+1)reg)) by Proposition 4.7,
so that λ+1, and hence λ, are not homogeneous. Note in particular that if there is 1 ⩽ r ⩽ l − 2 for
which (ar, ar+1) = (0, 2), (1, 0) or (1, 1), then λ+1 does have a strictly-removable 0-node (in row r + 1,
r or r respectively). So we can assume there is no such r.

So we assume that the tuple (a1, . . . , al−1) contains no 0s (except for possibly al−1), and does not
contain two consecutive entries less than 2.

Case 5.1. Suppose there are at least two values of r for which ar < 2. Let r, s be the two smallest such
values. Then

(λ1, . . . , λr−1) = (3l + 1 3. . . . 3(l − r) + 7),

λr = 3(l − r) + 3,

(λr+1, . . . , λs−1) = (3(l − r) + 1 3. . . . 3(l − s) + 7),

λs = 3(l − s) + 3 or 3(l − s) + 2.

Let
ν = ((((λ+1)+0)+1)+0 . . . )+1,

where +1 appears s − r times. As r − s ⩾ 2 we can calculate

(ν1, . . . , νr−1) = (3(l + s − r)− 1 3. . . . 3(l + s − 2r) + 5),

(νr, . . . , νs−2) = (3(l + s − 2r)− 1 3. . . . 3(l − r) + 5),

νs−1 = 3(l − r) + 3,

νs ⩽ 3(l − r)− 1,

so that ν has a strictly-removable 0-node (s − 1, 3(l − r) + 3).
Claim: If al−1 > 0 then (l + s − r + 2, 1) is a strictly-addable node of ν.
Proof: Since λ has length l + 2, and each step of adding all strictly-addable 0-nodes can add
at most one node in column 1, the length of ν is at most l + 2 + (s − r − 1). So certainly
(l + s − r + 2, 1) is not a node of ν. On the other hand, the assumption that al−1 > 0 means
that λ contains the partition σ(l) from Lemma 7.1. So (by Lemma 7.1) ν contains the partition
τ(l + s − r − 1), and in particular contains the node (l + s − r + 1, 2), so that (l + s − r + 2, 1)
is a strictly-addable node of ν.
Claim: If al−1 = 0 then (l + s − r, 3) is a strictly-addable node of ν.
Proof: In this case (λl−1, λl , . . . ) = (5, 4, 3, 1). So if we let ξ be the partition obtained from λ by
adding all strictly-addable 1-nodes, then all strictly-addable 0-nodes, then all strictly-addable
1-nodes, then (ξl−1, ξl , . . . ) = (8, 5, 3, 2, 1). In particular, ξ ′3 = l + 1. Since each step of adding
all strictly-addable 0-nodes can add at most one node in column 3, we get ν′3 ⩽ l + s − r − 1,
so that (l + s − r, 3) is not a node of ν. On the other hand, λ contains the partition σ(l − 1), so
by Lemma 7.1) ν contains the partition τ(l + s − r − 2), and in particular contains the nodes
(l + s− r − 2, 5) and (l + s− r − 1, 3), which means that (l + s− r, 3) is a strictly-addable node
of ν.
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In either case we see that ν has a strictly-addable 0-node in a longer ladder than the strictly-
removable node (s − 1, 3(l − r) + 3), so by Proposition 4.7 ν is not homogeneous, and hence neither
is λ.

Case 5.2. Suppose now that (a1, . . . , al) contains a single 0, with the remaining entries being 2s. Then
(a1, . . . , al−1) = (2, 2, . . . , 2, 0), so that

λ = (3l + 1 3. . . . 10, 5, 4, 3, 1).

If l = 2 then λ = (5, 4, 3, 1) ∈ H3, so assume l ⩾ 3. Now let

ν = λ+1 = (3l + 2 3. . . . 11, 5, 4, 3, 2).

Now we can calculate
νreg = (3l − 1, 3l − 2, 3l − 4 3. . . . 5, 3, 2),

giving
(νreg)△0 = (3l + 1, 3l − 2, 3l − 4, 3l − 5 3. . . . 4, 3, 1).

On the other hand,
ν+0 = (3l + 4 3. . . . 13, 7, 4, 3, 2, 1),

giving
(ν+0)reg = (3l + 1, 3l − 2, 3l − 3, 3l − 5 3. . . . 4, 2, 1) ̸= (νreg)△0.

So by Lemma 4.2 ν is not homogeneous, and hence λ is not homogeneous either.

Case 5.3. Finally consider the case where (a1, . . . , al−1) contains a single 1, and the rest are 2s. Write
λ = λ(l,r), where ar = 1 and as = 2 for all s ̸= r.

Case 5.3.1. First we suppose r ⩽ l − 2 (so that in particular l ⩾ 3). Then

λ(l,r) = (3l + 1 3. . . . 3(l − r) + 7, 3(l − r) + 3, 3(l − r) + 1 3. . . . 4, 3, 1),

and we obtain ddim(λ(l,r)) > ddim(µ(l)) and λ
reg
(l,r) = µ

reg
(l) by induction on r, using Lemmas 5.2

and 5.12.

Case 5.3.2. We are left with the case where r = l − 1, so that

λ = (3l + 1 3. . . . 10, 6, 4, 3, 1).

For l = 2 we use known decomposition numbers to show that λ is not homogeneous, while for l ⩾ 3
we can use Lemma 5.3.

Case 6. Finally suppose that λ−1 = λ and λ−0 = (3l − 1 3. . . . 2) + 3α, where l(α) ⩽ l. We can assume
l ⩾ 2, since the case l = 1 is included in Case 1. Now λ−0 has two strictly-addable 0-nodes in each of
rows 1, . . . , l, and one in row l + 1. We set ar = λr − λ−0

r for 1 ⩽ r ⩽ l and al+1 = λl+1 + 1.
The assumption that λ−1 = λ means that if r ⩽ l with ar = 0, then ar+1 = 2. Furthermore, if al = 0,

then αl must be 0.
If a1 = · · · = al = 2, then λ = (3l + 1 3. . . . 4) + 3α = (3l − 2 3. . . . 1) + 3(α + (1l)) or (3l + 1 3. . . .

1) + 3α, so λ is special, contrary to assumption. So we assume there is some r ⩽ l such that ar ⩽ 1.
If r < s ⩽ l and αr > αs, then the strictly-addable nodes of λ−0 in row r lie in a longer ladder

than the strictly-addable nodes in row s. So using Proposition 4.7, if as > 0, then ar = 2. Similarly, if
al+1 = 2 and αr > 0, then ar = 2. In particular, if αl > 0 then al+1 = 1 (since otherwise a1 = · · · =
al = 2, contrary to the last paragraph).

Combining these statements, we obtain ar = 2 for every r for which αr > αl .

Case 6.1. Suppose ar = 1 for a single value r, and as = 2 for all s ̸= r. So

λ = (3l + 1 3. . . . 1) + 3α − δr,

where δr is the composition which has a 1 in position r and 0 elsewhere. The assumptions above mean
that αr = 0 and al+1 = 2. Now we use a dimension argument. Let µ = (3l + 1 3. . . . 4) + 3α. Then
µreg = λreg and ddim(λ) > ddim(µ) by Lemmas 5.2 and 5.13 as αr = 0. So λ is not homogeneous.
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Case 6.2. Suppose that there exists r such that ar = 2 and either r = 1 or ar−1 > 0. Consider
the partition λ+1. We claim that this partition has a strictly-addable 0-node (r, 3(l − r + 2 + αr)):
this follows since λr = 3(l − r + 2 + αr) − 2, and λr−1 ⩾ 3(l − r + 2 + αr) if r ⩾ 2, and λr−2 ⩾
3(l − r + 2 + αr) + 2 if r ⩾ 3.

If there is any s ⩽ l for which (as, as+1) equals (0, 2), (1, 0) or (1, 1), then λ+1 has a strictly-
removable 0-node in either row s or row s + 1. Now the fact that ar = 2 and as ⩽ 1 and the argument
at the start of Case 6 mean that αs ⩽ αr, and therefore the strictly-removable 0-node in row s or s + 1
lies in a shorter ladder than the strictly-addable 0-node in row r. So by Proposition 4.7 λ+1 is not
homogeneous, and hence neither is λ.

So we can assume that as ⩾ 1 for all s, and that there are no two consecutive values of s with as = 1.
As observed above, there is at least one 1 ⩽ s ⩽ l with as = 1. If there is exactly one 1 ⩽ s ⩽ l + 1 for
which as = 1, then we are in case Case 6.1, so assume instead that there are at least two values of s
for which as = 1.

Now we define a sequence of partitions ν(1), ν(2), . . . by

ν(1) = λ+1, ν(k+1) = ((ν(k))+0)+1 for k ⩾ 1.

Observe that λ+1 has no parts congruent to 1 modulo 3, and so by Lemma 7.2 ν(k) has no parts
congruent to 1 modulo 3, for any k. Now we make the following observations, for k ⩾ 1.

Claim: If a1 = 2 or al+1 = 2 or the tuple (a1, . . . , al+1) contains k consecutive 2s, then ν(k) has
a strictly-addable 0-node (s, c) for which 3s + c ⩾ 3(αl + l + k + 1).
Proof: If a1 = 2, then we can take (s, c) = (1, 3(l + k + α1)). If al+1 = 2, then we can take
(s, c) = (l + k + 1, 1) by Lemma 7.3 and induction on k.

Assume now that k < r ⩽ l such that ar−k = 1 and ar−k+1 = · · · = ar = 2. Then αr−k =
· · · = αr = αl , so we can take (s, c) = (r, 3(αl + l + k − r + 1)) by Lemma 7.4.

Claim: If there is k ⩽ r ⩽ l such that (ar−k+1, . . . , ar+1) = (1, 2, 2, . . . , 2, 1), then ν(k) has a
strictly-removable 0-node (s, c) for which 3s + c = 3(αl + l + k).
Proof: In this case αr−1 = · · · = αr = αl . We can take (s, c) = (r, 3(αl + l − r + k)) by
Lemma 7.4, since

ν
(k)
r+1 ⩽ ν

(1)
r+1 + 3(k − 2) + 2 ⩽ 3(αl + l − r + k − 2) + 2.

As a result, Proposition 4.7 shows that ν(k) is not homogeneous for some k (and hence λ is not
homogeneous) unless the tuple (a1, . . . , al+1) has the form (1, 2t, 1, 2t, . . . , 1, 2t, 1) for some t ⩾ 1.
So assume this is the case. Now the fact that a1 < 2 implies α1 = αl . By Corollary 6.14 we can
then assume that α = (12) or ∅. In the first case λ = (9, 7), which can be ruled out looking at the
known decomposition matrices. So we may assume that α = ∅. If there are at least three values of
s for which as = 1, then we use a degree argument: specifically, we claim that there is a partition
µ such that µ ▷ λ, µreg = λreg, µ1 = λ1 and ddim(µ) > ddim(λ), which will show that λ is not
homogeneous. We prove this by induction on the number of 1s in the tuple (a1, . . . , al+1). If there are
at least four 1s, then we can use Lemma 5.2 and induction, so assume (a1, . . . , al+1) = (1, 2t, 1, 2t, 1).
Then we use Lemma 5.10.

We are left with the case where (a1, . . . , al+1) = (1, 2l−1, 1). Suppose first that l ⩾ 6. Then

ν(k) = (6l − 4 3. . . . 3l + 2, 3l, 3l − 4 3. . . . 2).

Now by Lemma 5.11 ν(k) is not homogeneous, and hence neither is λ.
So we are left with the cases 2 ⩽ l ⩽ 5. If l = 2 then λ = (6, 4), which can be dealt with using

known decomposition matrices. For 3 ⩽ l ⩽ 5, Proposition 5.16 shows that λ is not homogeneous.

Case 6.3. Suppose that a1 < 2 and there is no r ⩾ 2 for which ar = 2 and ar−1 > 0. Suppose in
addition that l ⩾ 3 and there is r ⩾ 4 such that ar ̸= 1. Since a1 < 2 we have α1 = αl . Since l ⩾ 3 we
can then assume from Corollary 6.14 that α = ∅. Now λ is not homogeneous by Proposition 5.14.
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Case 6.4. If neither Case 6.2 nor Case 6.3 applies, then the tuple (a1, . . . , al+1) has the form (1, 1, . . . , 1),
(0, 2, 1, 1, . . . , 1) or (1, 0, 2, 1, 1, . . . , 1). Again α1 = αl , so by Corollary 6.14 α = (12) or ∅. In the first
case λ ∈ {(9, 6), (8, 7)} (as a3 = 1 in this case by assumption) which can both be ruled out looking at
known decomposition matrices. So we may again assume that α = ∅. These cases can be dealt with
using Lemmas 5.7 to 5.9, except for the following small cases.

⋄ (6, 3), (5, 4) and (8, 7, 3) can be shown to be not homogeneous using known decomposition
matrices.

⋄ (11, 10, 6, 3), (14, 13, 9, 6, 3) and (17, 16, 12, 9, 6, 3) are not homogeneous by Proposition 5.16.

This completes the proof of Theorem 3.5.
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